STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting

Min Chen, Hao Yang, Shaohan Li, Xiaolin Qin
{"title":"STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting","authors":"Min Chen, Hao Yang, Shaohan Li, Xiaolin Qin","doi":"arxiv-2409.06732","DOIUrl":null,"url":null,"abstract":"There is a great need to accurately predict short-term precipitation, which\nhas socioeconomic effects such as agriculture and disaster prevention.\nRecently, the forecasting models have employed multi-source data as the\nmulti-modality input, thus improving the prediction accuracy. However, the\nprevailing methods usually suffer from the desynchronization of multi-source\nvariables, the insufficient capability of capturing spatio-temporal dependency,\nand unsatisfactory performance in predicting extreme precipitation events. To\nfix these problems, we propose a short-term precipitation forecasting model\nbased on spatio-temporal alignment attention, with SATA as the temporal\nalignment module and STAU as the spatio-temporal feature extractor to filter\nhigh-pass features from precipitation signals and capture multi-term temporal\ndependencies. Based on satellite and ERA5 data from the southwestern region of\nChina, our model achieves improvements of 12.61\\% in terms of RMSE, in\ncomparison with the state-of-the-art methods.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a great need to accurately predict short-term precipitation, which has socioeconomic effects such as agriculture and disaster prevention. Recently, the forecasting models have employed multi-source data as the multi-modality input, thus improving the prediction accuracy. However, the prevailing methods usually suffer from the desynchronization of multi-source variables, the insufficient capability of capturing spatio-temporal dependency, and unsatisfactory performance in predicting extreme precipitation events. To fix these problems, we propose a short-term precipitation forecasting model based on spatio-temporal alignment attention, with SATA as the temporal alignment module and STAU as the spatio-temporal feature extractor to filter high-pass features from precipitation signals and capture multi-term temporal dependencies. Based on satellite and ERA5 data from the southwestern region of China, our model achieves improvements of 12.61\% in terms of RMSE, in comparison with the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAA:用于短期降水预报的时空对齐注意力
短期降水对农业和防灾等社会经济影响巨大,因此亟需准确预测短期降水。近年来,预报模式采用多源数据作为多模态输入,从而提高了预报精度。然而,现有方法通常存在多源变量不同步、捕捉时空依赖性的能力不足以及预测极端降水事件的性能不理想等问题。为了解决这些问题,我们提出了一种基于时空配准注意力的短期降水预报模型,以 SATA 作为时空配准模块,以 STAU 作为时空特征提取器,从降水信号中过滤高通特征并捕捉多期时空依赖性。基于中国西南地区的卫星和ERA5数据,我们的模型在均方根误差(RMSE)方面与最先进的方法相比提高了12.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1