Regional data-driven weather modeling with a global stretched-grid

Thomas Nils Nipen, Håvard Homleid Haugen, Magnus Sikora Ingstad, Even Marius Nordhagen, Aram Farhad Shafiq Salihi, Paulina Tedesco, Ivar Ambjørn Seierstad, Jørn Kristiansen, Simon Lang, Mihai Alexe, Jesper Dramsch, Baudouin Raoult, Gert Mertes, Matthew Chantry
{"title":"Regional data-driven weather modeling with a global stretched-grid","authors":"Thomas Nils Nipen, Håvard Homleid Haugen, Magnus Sikora Ingstad, Even Marius Nordhagen, Aram Farhad Shafiq Salihi, Paulina Tedesco, Ivar Ambjørn Seierstad, Jørn Kristiansen, Simon Lang, Mihai Alexe, Jesper Dramsch, Baudouin Raoult, Gert Mertes, Matthew Chantry","doi":"arxiv-2409.02891","DOIUrl":null,"url":null,"abstract":"A data-driven model (DDM) suitable for regional weather forecasting\napplications is presented. The model extends the Artificial Intelligence\nForecasting System by introducing a stretched-grid architecture that dedicates\nhigher resolution over a regional area of interest and maintains a lower\nresolution elsewhere on the globe. The model is based on graph neural networks,\nwhich naturally affords arbitrary multi-resolution grid configurations. The model is applied to short-range weather prediction for the Nordics,\nproducing forecasts at 2.5 km spatial and 6 h temporal resolution. The model is\npre-trained on 43 years of global ERA5 data at 31 km resolution and is further\nrefined using 3.3 years of 2.5 km resolution operational analyses from the\nMetCoOp Ensemble Prediction System (MEPS). The performance of the model is\nevaluated using surface observations from measurement stations across Norway\nand is compared to short-range weather forecasts from MEPS. The DDM outperforms\nboth the control run and the ensemble mean of MEPS for 2 m temperature. The\nmodel also produces competitive precipitation and wind speed forecasts, but is\nshown to underestimate extreme events.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A data-driven model (DDM) suitable for regional weather forecasting applications is presented. The model extends the Artificial Intelligence Forecasting System by introducing a stretched-grid architecture that dedicates higher resolution over a regional area of interest and maintains a lower resolution elsewhere on the globe. The model is based on graph neural networks, which naturally affords arbitrary multi-resolution grid configurations. The model is applied to short-range weather prediction for the Nordics, producing forecasts at 2.5 km spatial and 6 h temporal resolution. The model is pre-trained on 43 years of global ERA5 data at 31 km resolution and is further refined using 3.3 years of 2.5 km resolution operational analyses from the MetCoOp Ensemble Prediction System (MEPS). The performance of the model is evaluated using surface observations from measurement stations across Norway and is compared to short-range weather forecasts from MEPS. The DDM outperforms both the control run and the ensemble mean of MEPS for 2 m temperature. The model also produces competitive precipitation and wind speed forecasts, but is shown to underestimate extreme events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全球拉伸网格进行区域数据驱动天气建模
本文介绍了一种适用于区域天气预报应用的数据驱动模型(DDM)。该模型扩展了人工智能预报系统,引入了拉伸网格结构,在感兴趣的区域范围内采用较高分辨率,而在全球其他地方则保持较低分辨率。该模型以图神经网络为基础,自然可实现任意的多分辨率网格配置。该模型被应用于北欧的短程天气预报,以 2.5 千米的空间分辨率和 6 小时的时间分辨率进行预报。该模型在 31 千米分辨率的 43 年全球ERA5 数据基础上进行了预训练,并利用来自气象局集合预报系统(MetCoOp Ensemble Prediction System,MEPS)的 3.3 年 2.5 千米分辨率业务分析对其进行了进一步完善。利用挪威各地测量站的地表观测数据对该模式的性能进行了评估,并与 MEPS 的短程天气预报进行了比较。在 2 米气温方面,DDM 的表现优于对照运行和 MEPS 的集合平均值。该模式还能做出有竞争力的降水和风速预报,但显示低估了极端事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1