ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution

Sungduk Yu, Brian L. White, Anahita Bhiwandiwalla, Musashi Hinck, Matthew Lyle Olson, Tung Nguyen, Vasudev Lal
{"title":"ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution","authors":"Sungduk Yu, Brian L. White, Anahita Bhiwandiwalla, Musashi Hinck, Matthew Lyle Olson, Tung Nguyen, Vasudev Lal","doi":"arxiv-2408.15993","DOIUrl":null,"url":null,"abstract":"Detecting and attributing temperature increases due to climate change is\ncrucial for understanding global warming and guiding adaptation strategies. The\ncomplexity of distinguishing human-induced climate signals from natural\nvariability has challenged traditional detection and attribution (D&A)\napproaches, which seek to identify specific \"fingerprints\" in climate response\nvariables. Deep learning offers potential for discerning these complex patterns\nin expansive spatial datasets. However, lack of standard protocols has hindered\nconsistent comparisons across studies. We introduce ClimDetect, a standardized\ndataset of over 816k daily climate snapshots, designed to enhance model\naccuracy in identifying climate change signals. ClimDetect integrates various\ninput and target variables used in past research, ensuring comparability and\nconsistency. We also explore the application of vision transformers (ViT) to\nclimate data, a novel and modernizing approach in this context. Our open-access\ndata and code serve as a benchmark for advancing climate science through\nimproved model evaluations. ClimDetect is publicly accessible via Huggingface\ndataet respository at: https://huggingface.co/datasets/ClimDetect/ClimDetect.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and attributing temperature increases due to climate change is crucial for understanding global warming and guiding adaptation strategies. The complexity of distinguishing human-induced climate signals from natural variability has challenged traditional detection and attribution (D&A) approaches, which seek to identify specific "fingerprints" in climate response variables. Deep learning offers potential for discerning these complex patterns in expansive spatial datasets. However, lack of standard protocols has hindered consistent comparisons across studies. We introduce ClimDetect, a standardized dataset of over 816k daily climate snapshots, designed to enhance model accuracy in identifying climate change signals. ClimDetect integrates various input and target variables used in past research, ensuring comparability and consistency. We also explore the application of vision transformers (ViT) to climate data, a novel and modernizing approach in this context. Our open-access data and code serve as a benchmark for advancing climate science through improved model evaluations. ClimDetect is publicly accessible via Huggingface dataet respository at: https://huggingface.co/datasets/ClimDetect/ClimDetect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ClimDetect:气候变化检测和归因基准数据集
检测和归因于气候变化导致的气温升高对于理解全球变暖和指导适应战略至关重要。将人为气候信号与自然可变性区分开来的复杂性对传统的探测和归因(D&A)方法提出了挑战,因为传统方法试图识别气候响应变量中的特定 "指纹"。深度学习为在广阔的空间数据集中识别这些复杂模式提供了潜力。然而,标准协议的缺乏阻碍了不同研究之间进行一致的比较。我们介绍了 ClimDetect,这是一个包含超过 816k 日气候快照的标准化数据集,旨在提高模型识别气候变化信号的准确性。ClimDetect 整合了过去研究中使用的各种输入和目标变量,确保了可比性和一致性。我们还探索了视觉转换器(ViT)在气候数据中的应用,这是一种新颖的现代化方法。我们公开的数据和代码是通过改进模型评估来推动气候科学发展的基准。ClimDetect 可通过 Huggingfacedataet 存储库公开访问:https://huggingface.co/datasets/ClimDetect/ClimDetect。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1