Towards turbine-location-aware multi-decadal wind power predictions with CMIP6

Nina Effenberger, Nicole Ludwig
{"title":"Towards turbine-location-aware multi-decadal wind power predictions with CMIP6","authors":"Nina Effenberger, Nicole Ludwig","doi":"arxiv-2408.14889","DOIUrl":null,"url":null,"abstract":"With the increasing amount of renewable energy in the grid, long-term wind\npower forecasting for multiple decades becomes more critical. In these\nlong-term forecasts, climate data is essential as it allows us to account for\nclimate change. Yet the resolution of climate models is often very coarse. In\nthis paper, we show that by including turbine locations when downscaling with\nGaussian Processes, we can generate valuable aggregate wind power predictions\ndespite the low resolution of the CMIP6 climate models. This work is a first\nstep towards multi-decadal turbine-location-aware wind power forecasting using\nglobal climate model output.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing amount of renewable energy in the grid, long-term wind power forecasting for multiple decades becomes more critical. In these long-term forecasts, climate data is essential as it allows us to account for climate change. Yet the resolution of climate models is often very coarse. In this paper, we show that by including turbine locations when downscaling with Gaussian Processes, we can generate valuable aggregate wind power predictions despite the low resolution of the CMIP6 climate models. This work is a first step towards multi-decadal turbine-location-aware wind power forecasting using global climate model output.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CMIP6 实现风机位置感知的十年期风能预测
随着电网中可再生能源的数量不断增加,几十年的长期风力预测变得更加重要。在长期预测中,气候数据至关重要,因为它可以让我们考虑气候变化。然而,气候模型的分辨率往往非常粗糙。在本文中,我们展示了在使用高斯过程进行降尺度时将风机位置包括在内,尽管 CMIP6 气候模型的分辨率很低,我们仍能生成有价值的总体风力发电预测。这项工作是利用全球气候模式输出进行十年期风机位置感知风能预测的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1