MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model

Haoyu Qin, Yungang Chen, Qianchuan Jiang, Pengchao Sun, Xiancai Ye, Chao Lin
{"title":"MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model","authors":"Haoyu Qin, Yungang Chen, Qianchuan Jiang, Pengchao Sun, Xiancai Ye, Chao Lin","doi":"arxiv-2408.06400","DOIUrl":null,"url":null,"abstract":"Deep Learning based Weather Prediction (DLWP) models have been improving\nrapidly over the last few years, surpassing state of the art numerical weather\nforecasts by significant margins. While much of the optimization effort is\nfocused on training curriculum to extend forecast range in the global context,\ntwo aspects remains less explored: limited area modeling and better backbones\nfor weather forecasting. We show in this paper that MetMamba, a DLWP model\nbuilt on a state-of-the-art state-space model, Mamba, offers notable\nperformance gains and unique advantages over other popular backbones using\ntraditional attention mechanisms and neural operators. We also demonstrate the\nfeasibility of deep learning based limited area modeling via coupled training\nwith a global host model.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Learning based Weather Prediction (DLWP) models have been improving rapidly over the last few years, surpassing state of the art numerical weather forecasts by significant margins. While much of the optimization effort is focused on training curriculum to extend forecast range in the global context, two aspects remains less explored: limited area modeling and better backbones for weather forecasting. We show in this paper that MetMamba, a DLWP model built on a state-of-the-art state-space model, Mamba, offers notable performance gains and unique advantages over other popular backbones using traditional attention mechanisms and neural operators. We also demonstrate the feasibility of deep learning based limited area modeling via coupled training with a global host model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetMamba:利用时空曼巴模型进行区域天气预报
基于深度学习的天气预报(DLWP)模型在过去几年中进步神速,大大超过了最先进的数值天气预报。虽然大部分优化工作都集中在训练课程上,以扩大全球范围内的预测范围,但有两个方面的探索仍然较少:有限区域建模和更好的天气预报骨干网。我们在本文中展示了建立在最先进状态空间模型 Mamba 上的 DLWP 模型 MetMamba,与其他使用传统注意力机制和神经算子的流行骨干网相比,它具有显著的性能提升和独特优势。我们还通过与全局主机模型的耦合训练,证明了基于深度学习的有限区域建模的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1