An efficient piperazine-based tertiary poly(amic acid) heterogeneous catalyst to prepare pyrrolidinone scaffolds

IF 1.8 3区 化学 Q3 CHEMISTRY, ORGANIC Synthetic Communications Pub Date : 2024-09-05 DOI:10.1080/00397911.2024.2400561
Rita Sharmila Dewi , Lia Zaharani , Mohd Rafie Johan , Nader Ghaffari Khaligh
{"title":"An efficient piperazine-based tertiary poly(amic acid) heterogeneous catalyst to prepare pyrrolidinone scaffolds","authors":"Rita Sharmila Dewi ,&nbsp;Lia Zaharani ,&nbsp;Mohd Rafie Johan ,&nbsp;Nader Ghaffari Khaligh","doi":"10.1080/00397911.2024.2400561","DOIUrl":null,"url":null,"abstract":"<div><p>Given the abundance of functional groups, meso- and macro-pores, and a high surface area, the piperazine-based poly(amic acid) was employed as a heterogeneous catalyst in the multicomponent reaction to prepare pyrrolidinone scaffolds in a green solvent, acting as a medium for mass transfer and crystallization solvent. The important parameters of the reaction were investigated to find the optimal reaction conditions. A conversion of 100% was obtained at reflux conditions within 30–100 min using a catalytic amount of 200 mg of piperazine-based poly(amic acid) per 2 mmol of reactants (100 mg of cat./1 mmol of reactant). The piperazine-based poly(amic acid) exhibited high recyclability and the recovered catalyst could be used in successive runs without worthy loss in its activity. This work revealed the catalytic activity of the piperazine-based poly(amic acid) as a promising functional polymeric heterogeneous catalyst for organic synthesis.</p></div>","PeriodicalId":22119,"journal":{"name":"Synthetic Communications","volume":"54 19","pages":"Pages 1679-1689"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0039791124001012","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Given the abundance of functional groups, meso- and macro-pores, and a high surface area, the piperazine-based poly(amic acid) was employed as a heterogeneous catalyst in the multicomponent reaction to prepare pyrrolidinone scaffolds in a green solvent, acting as a medium for mass transfer and crystallization solvent. The important parameters of the reaction were investigated to find the optimal reaction conditions. A conversion of 100% was obtained at reflux conditions within 30–100 min using a catalytic amount of 200 mg of piperazine-based poly(amic acid) per 2 mmol of reactants (100 mg of cat./1 mmol of reactant). The piperazine-based poly(amic acid) exhibited high recyclability and the recovered catalyst could be used in successive runs without worthy loss in its activity. This work revealed the catalytic activity of the piperazine-based poly(amic acid) as a promising functional polymeric heterogeneous catalyst for organic synthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备吡咯烷酮支架的高效哌嗪基三级聚(胺酸)异相催化剂
由于哌嗪基聚(amic acid)具有丰富的官能团、中孔和大孔以及高表面积,因此在多组分反应中被用作异相催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic Communications
Synthetic Communications 化学-有机化学
CiteScore
4.40
自引率
4.80%
发文量
156
审稿时长
4.3 months
期刊介绍: Synthetic Communications presents communications describing new methods, reagents, and other synthetic work pertaining to organic chemistry with sufficient experimental detail to permit reported reactions to be repeated by a chemist reasonably skilled in the art. In addition, the Journal features short, focused review articles discussing topics within its remit of synthetic organic chemistry.
期刊最新文献
Synthesis and antioxidant activity of 14-Aryl-14H-dibenzo[a,j] xanthene’s and bis(3-hydroxy-5,5′-dimethyl-2-cyclohexene-1-ones) derivatives using silica-tungstosulfonic acid catalyst Novel and efficient process for the synthesis of 1,3,4-oxadiazole containing MBX-4132 as antimicrobial agent in Neisseria gonorrhoeae Novel Schiff bases of quinolin-4(1h)-one: Synthesis, antiproliferative evaluation, apoptosis, cell cycle, autophagy and molecular docking studies in human colon cancer cells Development of an improved and facile synthesis route of the FGFR inhibitor erdafitinib An efficient and practical synthesis of ferroptosis inducer erastin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1