Kiduk Kim, Kyungjin Cho, Yujeong Eo, Jeeyoung Kim, Jihye Yun, Yura Ahn, Joon Beom Seo, Gil-Sun Hong, Namkug Kim
{"title":"Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study","authors":"Kiduk Kim, Kyungjin Cho, Yujeong Eo, Jeeyoung Kim, Jihye Yun, Yura Ahn, Joon Beom Seo, Gil-Sun Hong, Namkug Kim","doi":"10.1007/s10278-024-01245-0","DOIUrl":null,"url":null,"abstract":"<p>We aimed to evaluate the ability of deep learning (DL) models to identify patients from a paired chest radiograph (CXR) and compare their performance with that of human experts. In this retrospective study, patient identification DL models were developed using 240,004 CXRs. The models were validated using multiple datasets, namely, internal validation, CheXpert, and Chest ImaGenome (CIG), which include different populations. Model performance was analyzed in terms of disease change status. The performance of the models to identify patients from paired CXRs was compared with three junior radiology residents (group I), two senior radiology residents (group II), and two board-certified expert radiologists (group III). For the reader study, 240 patients (age, 56.617 ± 13.690 years, 113 females, 160 same pairs) were evaluated. A one-sided non-inferiority test was performed with a one-sided margin of 0.05. SimChest, our similarity-based DL model, demonstrated the best patient identification performance across multiple datasets, regardless of disease change status (internal validation [area under the receiver operating characteristic curve range: 0.992–0.999], CheXpert [0.933–0.948], and CIG [0.949–0.951]). The radiologists identified patients from the paired CXRs with a mean accuracy of 0.900 (95% confidence interval: 0.852–0.948), with performance increasing with experience (mean accuracy:group I [0.874], group II [0.904], group III [0.935], and SimChest [0.904]). SimChest achieved non-inferior performance compared to the radiologists (<i>P</i> for non-inferiority: 0.015). The findings of this diagnostic study indicate that DL models can screen for patient misidentification using a pair of CXRs non-inferiorly to human experts.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01245-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to evaluate the ability of deep learning (DL) models to identify patients from a paired chest radiograph (CXR) and compare their performance with that of human experts. In this retrospective study, patient identification DL models were developed using 240,004 CXRs. The models were validated using multiple datasets, namely, internal validation, CheXpert, and Chest ImaGenome (CIG), which include different populations. Model performance was analyzed in terms of disease change status. The performance of the models to identify patients from paired CXRs was compared with three junior radiology residents (group I), two senior radiology residents (group II), and two board-certified expert radiologists (group III). For the reader study, 240 patients (age, 56.617 ± 13.690 years, 113 females, 160 same pairs) were evaluated. A one-sided non-inferiority test was performed with a one-sided margin of 0.05. SimChest, our similarity-based DL model, demonstrated the best patient identification performance across multiple datasets, regardless of disease change status (internal validation [area under the receiver operating characteristic curve range: 0.992–0.999], CheXpert [0.933–0.948], and CIG [0.949–0.951]). The radiologists identified patients from the paired CXRs with a mean accuracy of 0.900 (95% confidence interval: 0.852–0.948), with performance increasing with experience (mean accuracy:group I [0.874], group II [0.904], group III [0.935], and SimChest [0.904]). SimChest achieved non-inferior performance compared to the radiologists (P for non-inferiority: 0.015). The findings of this diagnostic study indicate that DL models can screen for patient misidentification using a pair of CXRs non-inferiorly to human experts.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.