Towards Agentic AI on Particle Accelerators

Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Houscher, Jason St. John
{"title":"Towards Agentic AI on Particle Accelerators","authors":"Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Houscher, Jason St. John","doi":"arxiv-2409.06336","DOIUrl":null,"url":null,"abstract":"As particle accelerators grow in complexity, traditional control methods face\nincreasing challenges in achieving optimal performance. This paper envisions a\nparadigm shift: a decentralized multi-agent framework for accelerator control,\npowered by Large Language Models (LLMs) and distributed among autonomous\nagents. We present a proposition of a self-improving decentralized system where\nintelligent agents handle high-level tasks and communication and each agent is\nspecialized control individual accelerator components. This approach raises some questions: What are the future applications of AI\nin particle accelerators? How can we implement an autonomous complex system\nsuch as a particle accelerator where agents gradually improve through\nexperience and human feedback? What are the implications of integrating a\nhuman-in-the-loop component for labeling operational data and providing expert\nguidance? We show two examples, where we demonstrate viability of such\narchitecture.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As particle accelerators grow in complexity, traditional control methods face increasing challenges in achieving optimal performance. This paper envisions a paradigm shift: a decentralized multi-agent framework for accelerator control, powered by Large Language Models (LLMs) and distributed among autonomous agents. We present a proposition of a self-improving decentralized system where intelligent agents handle high-level tasks and communication and each agent is specialized control individual accelerator components. This approach raises some questions: What are the future applications of AI in particle accelerators? How can we implement an autonomous complex system such as a particle accelerator where agents gradually improve through experience and human feedback? What are the implications of integrating a human-in-the-loop component for labeling operational data and providing expert guidance? We show two examples, where we demonstrate viability of such architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在粒子加速器上实现代理人工智能
随着粒子加速器的复杂性不断增加,传统的控制方法在实现最佳性能方面面临着越来越大的挑战。本文设想了一种范式转变:一种用于加速器控制的去中心化多代理框架,由大型语言模型(LLM)驱动,分布在自主代理之间。我们提出了一个自我完善的去中心化系统,由智能代理处理高级任务和通信,每个代理专门控制单个加速器组件。这种方法提出了一些问题:人工智能在粒子加速器中的未来应用是什么?我们如何才能实现粒子加速器这样的自主复杂系统,让代理通过经验和人类反馈逐步改进?在标注运行数据和提供专家指导时,集成人在回路中的组件会产生什么影响?我们展示了两个例子,证明了这种架构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Potential of Resonance Islands and Bent Crystals for a Novel Slow Extraction from Circular Hadron Accelerators Space Charge and Future Light Sources Beam Dynamics simulations for ERDC project -- SRF linac for industrial use Realizing Steady-State Microbunching with Optical Stochastic Crystallization Towards Agentic AI on Particle Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1