Mathematical foundations of phonons in incommensurate materials

Michael Hott, Alexander B. Watson, Mitchell Luskin
{"title":"Mathematical foundations of phonons in incommensurate materials","authors":"Michael Hott, Alexander B. Watson, Mitchell Luskin","doi":"arxiv-2409.06151","DOIUrl":null,"url":null,"abstract":"In some models, periodic configurations can be shown to be stable under,\nboth, global $\\ell^2$ or local perturbations. This is not the case for\naperiodic media. The specific class of aperiodic media we are interested, in\narise from taking two 2D periodic crystals and stacking them parallel at a\nrelative twist. In periodic media, phonons are generalized eigenvectors for a\nstability operator acting on $\\ell^2$, coming from a mechanical energy. The\ngoal of our analysis is to provide phonons in the given class of aperiodic\nmedia with meaning. As rigorously established for the 1D Frenkel-Kontorova\nmodel and previously applied by one of the authors, we assume that we can\nparametrize minimizing lattice deformations w.r.t. local perturbations via\ncontinuous stacking-periodic functions, for which we previously derived a\ncontinuous energy density functional. Such (continuous) energy densities are\nanalytically and computationally much better accessible compared to discrete\nenergy functionals. In order to pass to an $\\ell^2$-based energy functional, we\nalso study the offset energy w.r.t. given lattice deformations, under\n$\\ell^1$-perturbations. Our findings show that, in the case of an undeformed\nbilayer heterostructure, while the energy density can be shown to be stable\nunder the assumption of stability of individual layers, the offset energy fails\nto be stable in the case of twisted bilayer graphene. We then establish\nconditions for stability and instability of the offset energy w.r.t. the\nrelaxed lattice. Finally, we show that, in the case of incommensurate bilayer\nhomostructures, i.e., two equal layers, if we choose minimizing deformations\naccording to the global energy density above, the offset energy is stable in\nthe limit of zero twist angle. Consequently, in this case, one can then define\nphonons as generalized eigenvectors w.r.t. the stability operator associated\nwith the offset energy.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In some models, periodic configurations can be shown to be stable under, both, global $\ell^2$ or local perturbations. This is not the case for aperiodic media. The specific class of aperiodic media we are interested, in arise from taking two 2D periodic crystals and stacking them parallel at a relative twist. In periodic media, phonons are generalized eigenvectors for a stability operator acting on $\ell^2$, coming from a mechanical energy. The goal of our analysis is to provide phonons in the given class of aperiodic media with meaning. As rigorously established for the 1D Frenkel-Kontorova model and previously applied by one of the authors, we assume that we can parametrize minimizing lattice deformations w.r.t. local perturbations via continuous stacking-periodic functions, for which we previously derived a continuous energy density functional. Such (continuous) energy densities are analytically and computationally much better accessible compared to discrete energy functionals. In order to pass to an $\ell^2$-based energy functional, we also study the offset energy w.r.t. given lattice deformations, under $\ell^1$-perturbations. Our findings show that, in the case of an undeformed bilayer heterostructure, while the energy density can be shown to be stable under the assumption of stability of individual layers, the offset energy fails to be stable in the case of twisted bilayer graphene. We then establish conditions for stability and instability of the offset energy w.r.t. the relaxed lattice. Finally, we show that, in the case of incommensurate bilayer homostructures, i.e., two equal layers, if we choose minimizing deformations according to the global energy density above, the offset energy is stable in the limit of zero twist angle. Consequently, in this case, one can then define phonons as generalized eigenvectors w.r.t. the stability operator associated with the offset energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不相容材料中声子的数学基础
在某些模型中,可以证明周期构型在全局$\ell^2$或局部扰动下都是稳定的。但对于非周期性介质来说,情况并非如此。我们感兴趣的这一类非周期性介质,是由两个二维周期晶体以等比扭转方式平行堆叠而成的。在周期介质中,声子是作用于 $\ell^2$ 的可变算子的广义特征向量,来自机械能。我们分析的目的是让声子在给定的非周期性介质中具有意义。正如为一维 Frenkel-Kontorov 模型所严格建立的以及作者之一先前所应用的那样,我们假定我们可以将与局部扰动相关的最小化晶格变形参数化为连续的堆积周期函数,我们先前已经为其导出了连续的能量密度函数。与离散能量函数相比,这种(连续)能量密度在分析和计算上都更容易获得。为了过渡到基于 $\ell^2$ 的能量函数,我们还研究了在$\ell^1$扰动下与给定晶格变形相关的偏移能量。我们的研究结果表明,在未变形的双层异质结构中,虽然在单层稳定的假设下能量密度可以证明是稳定的,但在扭曲的双层石墨烯中,偏移能量却不稳定。然后,我们建立了偏移能量相对于延迟晶格的稳定性和不稳定性的条件。最后,我们证明,在不相称的双层同构情况下,即两个相等的层,如果我们根据上述全局能量密度选择最小变形,偏移能量在零扭曲角的极限下是稳定的。因此,在这种情况下,我们可以将phonons定义为与偏移能相关的稳定算子的广义特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a Mathematical Model for Fluid Transport in Poroelastic Materials in 2D Space Determination of Fisher and Shannon Information for 1D Fractional Quantum Harmonic Oscillator Drinfel'd Doubles, Twists and All That... in Stringy Geometry and M Theory Integrable dynamics from Fermat's principle A comparison between classical and Bohmian quantum chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1