{"title":"ATENA: Adaptive TEchniques for Network Area Coverage and Routing in IoT-Based Edge Computing","authors":"Garrik Brel Jagho Mdemaya, Vianney Kengne Tchendji, Mthulisi Velempini, Ariege Atchaze","doi":"10.1007/s10922-024-09856-2","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) and Edge Computing (EC) are now pervasive. IoT networks are made up of several objects, deployed in an area of interest (AoI), that can communicate with each other and with a remote computing centre for decision-making. EC reduces latency and data congestion by bringing data processing closer to the source. In this paper, we address the problems of network coverage and data collection in IoT-based EC networks. Several solutions exist designed to solve these problems unfortunately, they are either not energy-efficient or do not consider connectivity and they do not cover AoI. The proposed routing mechanisms are often not suited for AoI coverage schemes and lead to poor data routing delay or high packet losses. To address these shortcomings, we propose ATENA, a periodic, lightweight and energy-efficient protocol that aims to improve network coverage based on the two new schemes used to define a few number of objects to be kept awake at each period it also uses an adaptive routing scheme to send the collected data to the computing centre. This protocol is designed to take into account the limited resources of objects and ensures a longer network lifetime. A comparison of ATENA’s simulation results with recent existing protocols shows that it significantly improves network coverage, network lifetime and end-to-end delay to the computing centre.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"59 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09856-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) and Edge Computing (EC) are now pervasive. IoT networks are made up of several objects, deployed in an area of interest (AoI), that can communicate with each other and with a remote computing centre for decision-making. EC reduces latency and data congestion by bringing data processing closer to the source. In this paper, we address the problems of network coverage and data collection in IoT-based EC networks. Several solutions exist designed to solve these problems unfortunately, they are either not energy-efficient or do not consider connectivity and they do not cover AoI. The proposed routing mechanisms are often not suited for AoI coverage schemes and lead to poor data routing delay or high packet losses. To address these shortcomings, we propose ATENA, a periodic, lightweight and energy-efficient protocol that aims to improve network coverage based on the two new schemes used to define a few number of objects to be kept awake at each period it also uses an adaptive routing scheme to send the collected data to the computing centre. This protocol is designed to take into account the limited resources of objects and ensures a longer network lifetime. A comparison of ATENA’s simulation results with recent existing protocols shows that it significantly improves network coverage, network lifetime and end-to-end delay to the computing centre.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.