The best ends by the best means: ethical concerns in app reviews

IF 3.5 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Empirical Software Engineering Pub Date : 2024-08-17 DOI:10.1007/s10664-024-10463-7
Neelam Tjikhoeri, Lauren Olson, Emitzá Guzmán
{"title":"The best ends by the best means: ethical concerns in app reviews","authors":"Neelam Tjikhoeri, Lauren Olson, Emitzá Guzmán","doi":"10.1007/s10664-024-10463-7","DOIUrl":null,"url":null,"abstract":"<p>This work analyzes ethical concerns found in users’ app store reviews. We performed this study because ethical concerns in mobile applications (apps) are widespread, pose severe threats to end users and society, and lack systematic analysis and methods for detection and classification. In addition, app store reviews allow practitioners to collect users’ perspectives, crucial for identifying software flaws, from a geographically distributed and large-scale audience. For our analysis, we collected five million user reviews, developed a set of ethical concerns representative of user preferences, and manually labeled a sample of these reviews. We found that (1) users highly report ethical concerns about censorship, identity theft, and safety (2) user reviews with ethical concerns are longer, more popular, and lowly rated, and (3) there is high automation potential for the classification and filtering of these reviews. Our results highlight the relevance of using app store reviews for the systematic consideration of ethical concerns during software evolution.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10463-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This work analyzes ethical concerns found in users’ app store reviews. We performed this study because ethical concerns in mobile applications (apps) are widespread, pose severe threats to end users and society, and lack systematic analysis and methods for detection and classification. In addition, app store reviews allow practitioners to collect users’ perspectives, crucial for identifying software flaws, from a geographically distributed and large-scale audience. For our analysis, we collected five million user reviews, developed a set of ethical concerns representative of user preferences, and manually labeled a sample of these reviews. We found that (1) users highly report ethical concerns about censorship, identity theft, and safety (2) user reviews with ethical concerns are longer, more popular, and lowly rated, and (3) there is high automation potential for the classification and filtering of these reviews. Our results highlight the relevance of using app store reviews for the systematic consideration of ethical concerns during software evolution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以最佳手段实现最佳目的:应用程序评论中的道德问题
本研究分析了用户在应用商店评论中发现的道德问题。我们之所以进行这项研究,是因为移动应用程序(Apps)中的道德问题非常普遍,对最终用户和社会构成严重威胁,而且缺乏系统的分析和检测与分类方法。此外,应用程序商店的评论允许从业人员从分布在不同地区的大规模受众中收集用户的观点,这对识别软件缺陷至关重要。为了进行分析,我们收集了五百万条用户评论,制定了一套代表用户偏好的道德问题,并对这些评论样本进行了人工标注。我们发现:(1) 用户对审查、身份盗用和安全等道德问题的报告率很高;(2) 有道德问题的用户评论篇幅较长、更受欢迎且评分较低;(3) 这些评论的分类和过滤具有很高的自动化潜力。我们的研究结果凸显了在软件进化过程中使用应用商店评论来系统考虑道德问题的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Empirical Software Engineering
Empirical Software Engineering 工程技术-计算机:软件工程
CiteScore
8.50
自引率
12.20%
发文量
169
审稿时长
>12 weeks
期刊介绍: Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories. The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings. Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.
期刊最新文献
The effect of data complexity on classifier performance. Reinforcement learning for online testing of autonomous driving systems: a replication and extension study. An empirical study on developers’ shared conversations with ChatGPT in GitHub pull requests and issues Quality issues in machine learning software systems An empirical study of token-based micro commits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1