Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-09-12 DOI:10.1007/s12033-024-01267-7
Amrita Behera, Gagan Kumar Panigrahi, Annapurna Sahoo
{"title":"Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives","authors":"Amrita Behera, Gagan Kumar Panigrahi, Annapurna Sahoo","doi":"10.1007/s12033-024-01267-7","DOIUrl":null,"url":null,"abstract":"<p>Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3′ UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01267-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3′ UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类健康和疾病中有义字介导的 mRNA 衰变:当前认识、调控机制和未来展望
无义介导的 mRNA 衰减(NMD)是一种在所有真核生物中都保留下来的监控机制,它通过靶向携带过早终止密码子的信使 RNA(mRNA)来确保转录本的质量。它通过靶向携带终止前密码子(PTC)的异常 mRNA 来调节基因表达,并消除 C 端截短的蛋白质。NMD 通过寻找停止密码子下游的长 3′ UTR 和外显子连接复合体(EJC)来区分异常和非异常转录本,因为它们表明存在 PTC。因此,NMD 可调节细胞监控并消除截短的蛋白质,但如果 PTC 逃过了监控途径,就会导致潜在的负面表型,导致遗传疾病。通过引入 PTC,替代剪接也有助于形成对 NMD 敏感的异构体。NMD 在癌症中扮演着复杂的角色,它既可以加重肿瘤,也可以降低肿瘤。一些肿瘤会刺激 NMD,使编码肿瘤抑制蛋白、应激反应蛋白和新抗原的 mRNA 退化。在另一种情况下,肿瘤会抑制 NMD 以促进肿瘤生长和存活所需的癌蛋白的表达。这种机制有助于通过 PTC 直通机制和个性化医疗开发新的治疗方法。对 NMD 监控的详细研究可能有助于制定改善人类健康的战略,从而与联合国可持续发展目标(可持续发展目标 3:良好的健康和福祉)保持一致。NMD 的潜在治疗应用对安全有效的调节提出了挑战。了解 NMD 调节的复杂性及其与其他细胞过程的相互作用,有助于开发治疗各种疾病的新干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Glycoprofile Comparison of the SARS-CoV-2 Spike Proteins Expressed in CHO and HEK Cell Lines. ZNF217 Mediates Transcriptional Activation of GRHL3 to Regulate SLC22A31 and Promote Malignant Progression in Thyroid Cancer. The Inhibitory Effects of Anti-GPC3 Antibody on Wnt/β-Catenin Signaling Pathway as a Biological Therapy in Liver Cancer. Proteins with Anti-apoptotic Action in the Hemolymph of Caterpillars of the Megalopygidae Family Acts by Maintaining the Structure of the Cellular Cytoskeleton. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1