Temporal knowledge completion enhanced self-supervised entity alignment

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Information Systems Pub Date : 2024-08-13 DOI:10.1007/s10844-024-00878-5
Teng Fu, Gang Zhou
{"title":"Temporal knowledge completion enhanced self-supervised entity alignment","authors":"Teng Fu, Gang Zhou","doi":"10.1007/s10844-024-00878-5","DOIUrl":null,"url":null,"abstract":"<p>Temporal graph entity alignment aims at finding the equivalent entity pairs across different temporal knowledge graphs (TKGs). Primarily methods mainly utilize a time-aware and relationship-aware approach to embed and align. However, the existence of long-tail entities in TKGs still restricts the accuracy of alignment, as the limited neighborhood information may restrict the available neighborhood information for obtaining high-quality embeddings, and hence would impact the efficiency of entity alignment in representation space. Moreover, most previous researches are supervised, with heavy dependence on seed labels for alignment, restricting their applicability in scenarios with limited resources. To tackle these challenges, we propose a Temporal Knowledge Completion enhanced Self-supervised Entity Alignment (TSEA). We argue that, with high-quality embeddings, the entities would be aligned in a self-supervised manner. To this end, TSEA is constituted of two modules: A graph completion module to predict the missing links for the long-tailed entities. With the improved graph, TSEA further incorporates a self-supervised entity alignment module to achieve unsupervised alignment. Experimental results on widely adopted benchmarks demonstrate improved performance compared to several recent baseline methods. Additional ablation experiments further corroborate the efficacy of the proposed modules.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"58 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00878-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal graph entity alignment aims at finding the equivalent entity pairs across different temporal knowledge graphs (TKGs). Primarily methods mainly utilize a time-aware and relationship-aware approach to embed and align. However, the existence of long-tail entities in TKGs still restricts the accuracy of alignment, as the limited neighborhood information may restrict the available neighborhood information for obtaining high-quality embeddings, and hence would impact the efficiency of entity alignment in representation space. Moreover, most previous researches are supervised, with heavy dependence on seed labels for alignment, restricting their applicability in scenarios with limited resources. To tackle these challenges, we propose a Temporal Knowledge Completion enhanced Self-supervised Entity Alignment (TSEA). We argue that, with high-quality embeddings, the entities would be aligned in a self-supervised manner. To this end, TSEA is constituted of two modules: A graph completion module to predict the missing links for the long-tailed entities. With the improved graph, TSEA further incorporates a self-supervised entity alignment module to achieve unsupervised alignment. Experimental results on widely adopted benchmarks demonstrate improved performance compared to several recent baseline methods. Additional ablation experiments further corroborate the efficacy of the proposed modules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时态知识完成增强型自监督实体配准
时态图实体对齐的目的是在不同的时态知识图(TKG)中找到等效的实体对。主要方法主要利用时间感知和关系感知方法进行嵌入和对齐。然而,TKG 中长尾实体的存在仍然限制了对齐的准确性,因为有限的邻域信息可能会限制获得高质量嵌入的可用邻域信息,从而影响实体在表示空间中对齐的效率。此外,以往的研究大多是有监督的,对齐严重依赖种子标签,这限制了它们在资源有限的场景中的适用性。为了应对这些挑战,我们提出了时态知识补全增强型自监督实体对齐(TSEA)。我们认为,有了高质量的嵌入,就能以自我监督的方式对齐实体。为此,TSEA 由两个模块组成:一个图完成模块,用于预测长尾实体的缺失链接。通过改进的图,TSEA 进一步整合了自监督实体对齐模块,以实现无监督对齐。在广泛采用的基准上进行的实验结果表明,与最近几种基线方法相比,TSEA 的性能有所提高。额外的消减实验进一步证实了所提模块的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
期刊最新文献
Nirdizati: an advanced predictive process monitoring toolkit Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation FedGR: Cross-platform federated group recommendation system with hypergraph neural networks CONCORD: enhancing COVID-19 research with weak-supervision based numerical claim extraction DA-BAG: A multi-model fusion text classification method combining BERT and GCN using self-domain adversarial training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1