Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection

Michael Meindl, Raphael Mönkemöller, Thomas Seel
{"title":"Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection","authors":"Michael Meindl, Raphael Mönkemöller, Thomas Seel","doi":"arxiv-2409.06361","DOIUrl":null,"url":null,"abstract":"Stem cell therapy is a promising approach to treat heart insufficiency and\nbenefits from automated myocardial injection which requires highly precise\nmotion of a robotic manipulator that is equipped with a syringe. This work\ninvestigates whether sufficiently precise motion can be achieved by combining a\nSCARA robot and learning control methods. For this purpose, the method\nAutonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to\nmulti-input/multi-output systems. The proposed learning method solves reference\ntracking tasks in systems with unknown, nonlinear, multi-input/multi-output\ndynamics by iteratively updating an input trajectory in a plug-and-play fashion\nand without requiring manual parameter tuning. The proposed learning method is\nvalidated in a preliminary simulation study of a simplified SCARA robot that\nhas to perform three desired motions. The results demonstrate that the proposed\nlearning method achieves highly precise reference tracking without requiring\nany a priori model information or manual parameter tuning in as little as 15\ntrials per motion. The results further indicate that the combination of a SCARA\nrobot and learning method achieves sufficiently precise motion to potentially\nenable automatic myocardial injection if similar results can be obtained in a\nreal-world setting.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell therapy is a promising approach to treat heart insufficiency and benefits from automated myocardial injection which requires highly precise motion of a robotic manipulator that is equipped with a syringe. This work investigates whether sufficiently precise motion can be achieved by combining a SCARA robot and learning control methods. For this purpose, the method Autonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to multi-input/multi-output systems. The proposed learning method solves reference tracking tasks in systems with unknown, nonlinear, multi-input/multi-output dynamics by iteratively updating an input trajectory in a plug-and-play fashion and without requiring manual parameter tuning. The proposed learning method is validated in a preliminary simulation study of a simplified SCARA robot that has to perform three desired motions. The results demonstrate that the proposed learning method achieves highly precise reference tracking without requiring any a priori model information or manual parameter tuning in as little as 15 trials per motion. The results further indicate that the combination of a SCARA robot and learning method achieves sufficiently precise motion to potentially enable automatic myocardial injection if similar results can be obtained in a real-world setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动心肌注射的 SCARA 机器人的自主迭代运动学习 (AI-MOLE)
干细胞疗法是治疗心脏功能不全的一种很有前景的方法,可从自动心肌注射中获益,这要求配备注射器的机器人机械手高度精确地运动。这项研究探讨了是否可以通过结合 SCARA 机器人和学习控制方法来实现足够精确的运动。为此,对自主迭代运动学习(AI-MOLE)方法进行了扩展,使其适用于多输入/多输出系统。所提出的学习方法以即插即用的方式迭代更新输入轨迹,无需手动调整参数,从而解决了具有未知、非线性、多输入/多输出动力学的系统中的参照跟踪任务。通过对一个简化 SCARA 机器人的初步仿真研究,验证了所提出的学习方法,该机器人需要执行三个预期动作。结果表明,所提出的学习方法无需任何先验模型信息或手动参数调整,即可实现高度精确的参考跟踪,每个运动只需 15 次试验。结果进一步表明,SCARA 机器人与学习方法的结合实现了足够精确的运动,如果能在真实世界环境中获得类似的结果,则有可能实现自动心肌注射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1