Improving Initial Transients of Online Learning Echo State Network Control System via Feedback Adjustment

Junyi Shen
{"title":"Improving Initial Transients of Online Learning Echo State Network Control System via Feedback Adjustment","authors":"Junyi Shen","doi":"arxiv-2409.08228","DOIUrl":null,"url":null,"abstract":"Echo state networks (ESNs) have gained popularity in online learning control\nsystems due to their easy training. However, online learning ESN controllers\noften undergo slow convergence and produce unexpected outputs during the\ninitial transient phase. Existing solutions, such as prior training or control\nmode switching, can be complex and have drawbacks. This work offers a simple\nyet effective method to address these initial transients by integrating a\nfeedback proportional-differential (P-D) controller. Simulation results show\nthat the proposed control system exhibits fast convergence and strong\nrobustness against plant dynamics and hyperparameter changes. This work is\nexpected to offer practical benefits for engineers seeking to implement online\nlearning ESN control systems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Echo state networks (ESNs) have gained popularity in online learning control systems due to their easy training. However, online learning ESN controllers often undergo slow convergence and produce unexpected outputs during the initial transient phase. Existing solutions, such as prior training or control mode switching, can be complex and have drawbacks. This work offers a simple yet effective method to address these initial transients by integrating a feedback proportional-differential (P-D) controller. Simulation results show that the proposed control system exhibits fast convergence and strong robustness against plant dynamics and hyperparameter changes. This work is expected to offer practical benefits for engineers seeking to implement online learning ESN control systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过反馈调整改进在线学习回声状态网络控制系统的初始瞬态
回声状态网络(ESN)由于易于训练,在在线学习控制系统中颇受欢迎。然而,在线学习 ESN 控制器往往收敛缓慢,并在初始瞬态阶段产生意外输出。现有的解决方案,如事先训练或控制模式切换,可能会很复杂,而且存在缺点。本研究提供了一种简单而有效的方法,通过集成反馈比例-微分 (P-D) 控制器来解决这些初始瞬态问题。仿真结果表明,所提出的控制系统收敛速度快,对工厂动态和超参数变化具有很强的稳健性。这项工作有望为寻求实施在线学习 ESN 控制系统的工程师带来实际好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1