Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li
{"title":"Analytic Class Incremental Learning for Sound Source Localization with Privacy Protection","authors":"Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li","doi":"arxiv-2409.07224","DOIUrl":null,"url":null,"abstract":"Sound Source Localization (SSL) enabling technology for applications such as\nsurveillance and robotics. While traditional Signal Processing (SP)-based SSL\nmethods provide analytic solutions under specific signal and noise assumptions,\nrecent Deep Learning (DL)-based methods have significantly outperformed them.\nHowever, their success depends on extensive training data and substantial\ncomputational resources. Moreover, they often rely on large-scale annotated\nspatial data and may struggle when adapting to evolving sound classes. To\nmitigate these challenges, we propose a novel Class Incremental Learning (CIL)\napproach, termed SSL-CIL, which avoids serious accuracy degradation due to\ncatastrophic forgetting by incrementally updating the DL-based SSL model\nthrough a closed-form analytic solution. In particular, data privacy is ensured\nsince the learning process does not revisit any historical data\n(exemplar-free), which is more suitable for smart home scenarios. Empirical\nresults in the public SSLR dataset demonstrate the superior performance of our\nproposal, achieving a localization accuracy of 90.9%, surpassing other\ncompetitive methods.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sound Source Localization (SSL) enabling technology for applications such as
surveillance and robotics. While traditional Signal Processing (SP)-based SSL
methods provide analytic solutions under specific signal and noise assumptions,
recent Deep Learning (DL)-based methods have significantly outperformed them.
However, their success depends on extensive training data and substantial
computational resources. Moreover, they often rely on large-scale annotated
spatial data and may struggle when adapting to evolving sound classes. To
mitigate these challenges, we propose a novel Class Incremental Learning (CIL)
approach, termed SSL-CIL, which avoids serious accuracy degradation due to
catastrophic forgetting by incrementally updating the DL-based SSL model
through a closed-form analytic solution. In particular, data privacy is ensured
since the learning process does not revisit any historical data
(exemplar-free), which is more suitable for smart home scenarios. Empirical
results in the public SSLR dataset demonstrate the superior performance of our
proposal, achieving a localization accuracy of 90.9%, surpassing other
competitive methods.