Numerical analysis of hydrophobic surface effects on cavitation inception and evolution in high-speed centrifugal pumps for thermal energy storage and transfer systems

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-10 DOI:10.1063/5.0229878
Dajiang Guo, Cong Wang, Yu Ruan, Hongmei Yin, XiaoXu Fan, Ziwei Wang, MingDa Jiang, Lei Zhang
{"title":"Numerical analysis of hydrophobic surface effects on cavitation inception and evolution in high-speed centrifugal pumps for thermal energy storage and transfer systems","authors":"Dajiang Guo, Cong Wang, Yu Ruan, Hongmei Yin, XiaoXu Fan, Ziwei Wang, MingDa Jiang, Lei Zhang","doi":"10.1063/5.0229878","DOIUrl":null,"url":null,"abstract":"This study explores the influence of wettability surfaces on cavitation inception and evolution in high-speed centrifugal pumps used for thermal energy storage and transfer systems through numerical simulations. The simulations were conducted using the Kunz mass transfer model implemented in Fluent, combined with the Eulerian multiphase flow approach and the shear stress transport k–ω turbulence model. The cavitation dynamics were analyzed across contact angles ranging from superhydrophilic to superhydrophobic conditions. The results demonstrate that superhydrophobic surfaces delay cavitation onset compared to hydrophilic ones, reducing the critical cavitation coefficient by at least 28%. At flow rates of 1.11 Q0 and 0.89 Q0, cavitation numbers show distinct trends, with superhydrophobic surfaces enhancing cavitation stability and reducing the frequency of cavitation shedding. The reentrant jet dynamics are also affected, with increased hydrophobicity weakening the jets and stabilizing cavitation zones. This research aims to advance the understanding of using surface wettability to manage cavitation in high-speed centrifugal pumps, thereby improving the performance and reliability of thermal energy storage and transfer systems.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0229878","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the influence of wettability surfaces on cavitation inception and evolution in high-speed centrifugal pumps used for thermal energy storage and transfer systems through numerical simulations. The simulations were conducted using the Kunz mass transfer model implemented in Fluent, combined with the Eulerian multiphase flow approach and the shear stress transport k–ω turbulence model. The cavitation dynamics were analyzed across contact angles ranging from superhydrophilic to superhydrophobic conditions. The results demonstrate that superhydrophobic surfaces delay cavitation onset compared to hydrophilic ones, reducing the critical cavitation coefficient by at least 28%. At flow rates of 1.11 Q0 and 0.89 Q0, cavitation numbers show distinct trends, with superhydrophobic surfaces enhancing cavitation stability and reducing the frequency of cavitation shedding. The reentrant jet dynamics are also affected, with increased hydrophobicity weakening the jets and stabilizing cavitation zones. This research aims to advance the understanding of using surface wettability to manage cavitation in high-speed centrifugal pumps, thereby improving the performance and reliability of thermal energy storage and transfer systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疏水表面对热能储存和输送系统高速离心泵中气蚀萌发和演化的影响的数值分析
本研究通过数值模拟探讨了湿润表面对用于热能储存和传输系统的高速离心泵中气蚀萌发和演变的影响。模拟采用了 Fluent 中的 Kunz 传质模型,并结合了欧拉多相流方法和剪应力传输 k-ω 湍流模型。分析了从超亲水到超疏水条件下不同接触角的空化动力学。结果表明,与亲水表面相比,超疏水表面会延迟空化的发生,使临界空化系数至少降低 28%。在流速为 1.11 Q0 和 0.89 Q0 时,空化数显示出明显的趋势,超疏水表面增强了空化稳定性,降低了空化脱落的频率。重入射流动力学也受到影响,疏水性增加会削弱射流并稳定空化区。这项研究旨在推进对利用表面润湿性管理高速离心泵气蚀的理解,从而提高热能存储和传输系统的性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
A comprehensive investigation and optimization of superheat degree on performance of supersonic nozzle by considering non-equilibrium condensation and entropy generation analysis Experimental study on flow/noise of a circular cylinder with concentric/eccentric microperforated ring fairings Predicting orientation in extruded wood polymer composites Lagrangian coherent structures around a bridge pier with scour hole First- and second-order unconditionally stable and decoupled schemes for the closed-loop geothermal system based on the coupled multiphysics model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1