Non-unique machine learning mapping in data-driven Reynolds-averaged turbulence models

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-09 DOI:10.1063/5.0220444
Anthony Man, Mohammad Jadidi, Amir Keshmiri, Hujun Yin, Yasser Mahmoudi
{"title":"Non-unique machine learning mapping in data-driven Reynolds-averaged turbulence models","authors":"Anthony Man, Mohammad Jadidi, Amir Keshmiri, Hujun Yin, Yasser Mahmoudi","doi":"10.1063/5.0220444","DOIUrl":null,"url":null,"abstract":"Recent growing interest in using machine learning for turbulence modeling has led to many proposed data-driven turbulence models in the literature. However, most of these models have not been developed with overcoming non-unique mapping (NUM) in mind, which is a significant source of training and prediction error. Only NUM caused by one-dimensional channel flow data has been well studied in the literature, despite most data-driven models having been trained on two-dimensional flow data. The present work aims to be the first detailed investigation on NUM caused by two-dimensional flows. A method for quantifying NUM is proposed and demonstrated on data from a flow over periodic hills and an impinging jet. The former is a wall-bounded separated flow, and the latter is a shear flow containing stagnation and recirculation. This work confirms that data from two-dimensional flows can cause NUM in data-driven turbulence models with the commonly used invariant inputs. This finding was verified with both cases, which contain different flow phenomena, hence showing that NUM is not limited to specific flow physics. Furthermore, the proposed method revealed that regions containing low strain and rotation or near pure shear cause the majority of NUM in both cases—approximately 76% and 89% in the flow over periodic hills and impinging jet, respectively. These results led to viscosity ratio being selected as a supplementary input variable (SIV), demonstrating that SIVs can reduce NUM caused by data from two-dimensional flows and subsequently improve the accuracy of tensor-basis machine learning models for turbulence modeling.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0220444","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent growing interest in using machine learning for turbulence modeling has led to many proposed data-driven turbulence models in the literature. However, most of these models have not been developed with overcoming non-unique mapping (NUM) in mind, which is a significant source of training and prediction error. Only NUM caused by one-dimensional channel flow data has been well studied in the literature, despite most data-driven models having been trained on two-dimensional flow data. The present work aims to be the first detailed investigation on NUM caused by two-dimensional flows. A method for quantifying NUM is proposed and demonstrated on data from a flow over periodic hills and an impinging jet. The former is a wall-bounded separated flow, and the latter is a shear flow containing stagnation and recirculation. This work confirms that data from two-dimensional flows can cause NUM in data-driven turbulence models with the commonly used invariant inputs. This finding was verified with both cases, which contain different flow phenomena, hence showing that NUM is not limited to specific flow physics. Furthermore, the proposed method revealed that regions containing low strain and rotation or near pure shear cause the majority of NUM in both cases—approximately 76% and 89% in the flow over periodic hills and impinging jet, respectively. These results led to viscosity ratio being selected as a supplementary input variable (SIV), demonstrating that SIVs can reduce NUM caused by data from two-dimensional flows and subsequently improve the accuracy of tensor-basis machine learning models for turbulence modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的雷诺平均湍流模型中的非唯一机器学习映射
最近,人们对使用机器学习进行湍流建模的兴趣日益浓厚,因此在文献中提出了许多数据驱动的湍流模型。然而,这些模型大多没有考虑克服非唯一映射(NUM)问题,而非唯一映射是训练和预测误差的重要来源。尽管大多数数据驱动模型都是在二维水流数据上进行训练的,但文献中只对一维水道水流数据引起的非唯一映射进行了深入研究。本研究旨在首次详细调查二维流动造成的 NUM。本文提出了一种量化 NUM 的方法,并在周期性山丘上的流动和冲击射流的数据上进行了演示。前者是壁界分离流,后者是包含停滞和再循环的剪切流。这项工作证实,二维流的数据会导致数据驱动湍流模型中的 NUM,而这些数据是常用的不变输入。这一发现在包含不同流动现象的两种情况下都得到了验证,从而表明 NUM 并不局限于特定的流动物理。此外,所提出的方法还显示,在两种情况下,包含低应变和旋转或接近纯剪切的区域会导致大部分 NUM--在周期性山丘上的流动和冲击射流中分别约为 76% 和 89%。这些结果促使粘度比被选为补充输入变量(SIV),证明了 SIV 可以减少二维流动数据引起的 NUM,从而提高用于湍流建模的张量基础机器学习模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
A comprehensive investigation and optimization of superheat degree on performance of supersonic nozzle by considering non-equilibrium condensation and entropy generation analysis Experimental study on flow/noise of a circular cylinder with concentric/eccentric microperforated ring fairings Predicting orientation in extruded wood polymer composites Lagrangian coherent structures around a bridge pier with scour hole First- and second-order unconditionally stable and decoupled schemes for the closed-loop geothermal system based on the coupled multiphysics model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1