A Framework for Predicting the Impact of Game Balance Changes Through Meta Discovery

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Games Pub Date : 2024-09-10 DOI:10.1109/TG.2024.3457822
Akash Saravanan;Matthew Guzdial
{"title":"A Framework for Predicting the Impact of Game Balance Changes Through Meta Discovery","authors":"Akash Saravanan;Matthew Guzdial","doi":"10.1109/TG.2024.3457822","DOIUrl":null,"url":null,"abstract":"A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games, such as \n<italic>Pokémon</i>\n or \n<italic>League of Legends</i>\n, it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this article, we present such a meta discovery framework, leveraging reinforcement learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in \n<italic>Pokémon Showdown</i>\n, a collection of competitive \n<italic>Pokémon</i>\n tiers, with high accuracy.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 4","pages":"821-830"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10675455/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games, such as Pokémon or League of Legends , it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this article, we present such a meta discovery framework, leveraging reinforcement learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in Pokémon Showdown , a collection of competitive Pokémon tiers, with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过元发现预测游戏平衡变化影响的框架
元游戏是超越游戏规则的知识集合。在《口袋妖怪》或《英雄联盟》等竞争性团队游戏中,它指的是当前玩家基础中的主要角色和/或策略。开发者对游戏平衡性的改变可能会对这些元角色产生剧烈且不可预见的后果。预测平衡变化影响的框架可以帮助开发者做出更明智的平衡决策。在本文中,我们提出了这样一个元发现框架,利用强化学习来自动测试平衡变化。我们的研究结果证明了预测poksammon摊牌平衡变化结果的能力,这是一个竞争性poksammon层级的集合,具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
期刊最新文献
Table of Contents Guest Editorial: Special Issue on Human Centered AI in Game Evaluation IEEE Transactions on Games Publication Information IEEE Computational Intelligence Society Information Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1