Extracellular vesicle-associated DNA: ten years since its discovery in human blood

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-09-12 DOI:10.1038/s41419-024-07003-y
Thupten Tsering, Amélie Nadeau, Tad Wu, Kyle Dickinson, Julia V. Burnier
{"title":"Extracellular vesicle-associated DNA: ten years since its discovery in human blood","authors":"Thupten Tsering, Amélie Nadeau, Tad Wu, Kyle Dickinson, Julia V. Burnier","doi":"10.1038/s41419-024-07003-y","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade’s worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07003-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade’s worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞外囊泡相关 DNA:在人类血液中发现该 DNA 十年了
细胞外囊泡(EVs)已成为细胞间通信的关键角色,可促进细胞间重要货物的转移。液体活检,尤其是通过分离细胞外囊泡,揭示了丰富的潜在健康和疾病生物标记物来源,其中包括蛋白质和核酸。十年前,在一名胰腺癌患者的血液中发现了细胞外囊泡相关 DNA(EV-DNA),这是这项探索的一个里程碑。随后几年中,我们取得了长足的进步,加深了对 EV-DNA 释放、检测和分析的分子复杂性的了解。了解 EV-DNA 释放的复杂性并解决 EV-DNA 研究中固有的挑战,是加强基于液体活检策略的关键步骤。这些策略对于检测和监测各种病理状况(尤其是癌症)至关重要,有赖于全面了解 EV-DNA 释放的原因和方式。在我们的综述中,我们旨在对十年来有关 EV-DNA 的研究进行全面总结。我们将深入探讨 EV-DNA 释放的各种机制、其作为生物标志物的潜力、其功能能力、该领域不一致的研究结果以及阻碍其临床应用的障碍。展望未来十年,我们认为,EV 分离和检测技术的进步,加上标准化和数据共享的改善,将促进开发新的策略,利用 EV-DNA 作为生物标志物来源和治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
Extracellular vesicle-associated DNA: ten years since its discovery in human blood CD36-mediated ferroptosis destabilizes CD4+ T cell homeostasis in acute Stanford type-A aortic dissection The NRF2-CARM1 axis links glucose sensing to transcriptional and epigenetic regulation of the pentose phosphate pathway in gastric cancer A bird’s eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications Phosphatase LHPP confers prostate cancer ferroptosis activation by modulating the AKT-SKP2-ACSL4 pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1