Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru0 sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-07 DOI:10.1007/s12274-024-6954-1
Rushuo Li, Tao Ban, Danfeng Zhao, Jing Lin, Zhiyuan Liu, Linmeng Wang, Xiubing Huang, Zhiping Tao, Ge Wang
{"title":"Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru0 sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition","authors":"Rushuo Li,&nbsp;Tao Ban,&nbsp;Danfeng Zhao,&nbsp;Jing Lin,&nbsp;Zhiyuan Liu,&nbsp;Linmeng Wang,&nbsp;Xiubing Huang,&nbsp;Zhiping Tao,&nbsp;Ge Wang","doi":"10.1007/s12274-024-6954-1","DOIUrl":null,"url":null,"abstract":"<div><p>Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further to synthesize heterogeneous catalyst with highly dispersed RuNi nanoparticles (Ru<sub>1</sub>Ni<sub>1.5</sub>@UiO-66(Ce)-12 h). The construction of Ce-O-Ru/Ni heterogeneous interfaces and Ni–Ru bonds provide electron transfer channels from Ce-oxo clusters and Ni species to Ru species. Furthermore, the microenvironment and electronic structure of Ru<sup>0</sup> active sites were synergistically regulated by adjusting the content of metal-organic frameworks (MOFs) defects and Ni promoter, thereby enhancing the adsorption and activation ability of H–H and C=C bonds. Therefore, Ru<sub>1</sub>Ni<sub>1.5</sub>@UiO-66(Ce)-12 h achieved dicyclopentadiene saturated hydrogenation (100% conversion) to tetrahydrodicyclopentadiene (∼ 100% selectivity) under mild condition (35 °C, 1 MPa) with only 25 min. Meanwhile, the sample exhibited excellent structural stability after 6 cycles test. This study provides a promising strategy for the rational design of remarkable noble metal-based catalysts for practical applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9550 - 9563"},"PeriodicalIF":9.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6954-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further to synthesize heterogeneous catalyst with highly dispersed RuNi nanoparticles (Ru1Ni1.5@UiO-66(Ce)-12 h). The construction of Ce-O-Ru/Ni heterogeneous interfaces and Ni–Ru bonds provide electron transfer channels from Ce-oxo clusters and Ni species to Ru species. Furthermore, the microenvironment and electronic structure of Ru0 active sites were synergistically regulated by adjusting the content of metal-organic frameworks (MOFs) defects and Ni promoter, thereby enhancing the adsorption and activation ability of H–H and C=C bonds. Therefore, Ru1Ni1.5@UiO-66(Ce)-12 h achieved dicyclopentadiene saturated hydrogenation (100% conversion) to tetrahydrodicyclopentadiene (∼ 100% selectivity) under mild condition (35 °C, 1 MPa) with only 25 min. Meanwhile, the sample exhibited excellent structural stability after 6 cycles test. This study provides a promising strategy for the rational design of remarkable noble metal-based catalysts for practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷工程和镍促进剂协同加速 UiO-66(Ce)中 Ru0 位点的电子转移,从而在温和条件下实现双环戊二烯氢化
在温和条件下进行烯烃加氢是工业应用的关键和挑战。本文以三聚氰酸为分子蚀刻 "剪刀",构建了有缺陷的 UiO-66(Ce),并进一步合成了高度分散的 RuNi 纳米颗粒(Ru1Ni1.5@UiO-66(Ce)-12 h)的异相催化剂。Ce-O-Ru/Ni 异质界面和 Ni-Ru 键的构建为电子从 Ce-oxo 簇和 Ni 物种转移到 Ru 物种提供了通道。此外,通过调整金属有机框架(MOFs)缺陷和镍促进剂的含量,Ru0 活性位点的微环境和电子结构得到了协同调控,从而增强了 H-H 和 C=C 键的吸附和活化能力。因此,Ru1Ni1.5@UiO-66(Ce)-12 h 在温和条件下(35 °C,1 MPa),仅用 25 分钟就实现了双环戊二烯饱和加氢(转化率 100%)至四氢双环戊二烯(选择性 ∼ 100%)。同时,该样品在经过 6 次循环测试后表现出优异的结构稳定性。这项研究为合理设计实用的贵金属基催化剂提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1