Osama AlSattam, Michael Mongin, Mitchell Grose, Sidaard Gunasekaran, Keigo Hirakawa
{"title":"KF-PEV: a causal Kalman filter-based particle event velocimetry","authors":"Osama AlSattam, Michael Mongin, Mitchell Grose, Sidaard Gunasekaran, Keigo Hirakawa","doi":"10.1007/s00348-024-03877-y","DOIUrl":null,"url":null,"abstract":"<div><p>Event-based pixel sensors asynchronously report changes in log-intensity in microsecond-order resolution. Its exceptional speed, cost effectiveness, and sparse event stream make it an attractive imaging modality for particle tracking velocimetry. In this work, we propose a causal Kalman filter-based particle event velocimetry (KF-PEV). Using the Kalman filter model to track the events generated by the particles seeded in the flow medium, KF-PEV yields the linear least squares estimate of the particle track velocities corresponding to the flow vector field. KF-PEV processes events in a computationally efficient and streaming manner (i.e., causal and iteratively updating). Our simulation-based benchmarking study with synthetic particle event data confirms that the proposed KF-PEV outperforms the conventional frame-based particle image/tracking velocimetry as well as the state-of-the-art event-based particle velocimetry methods. In a real-world water tunnel event-based sensor data experiment performed on what we believe to be the widest field view ever reported, KF-PEV accurately predicted the expected flow field of the SD7003 wing, including details such as the lower velocity in the wake and the flow separation around the underside of an angled wing.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03877-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03877-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Event-based pixel sensors asynchronously report changes in log-intensity in microsecond-order resolution. Its exceptional speed, cost effectiveness, and sparse event stream make it an attractive imaging modality for particle tracking velocimetry. In this work, we propose a causal Kalman filter-based particle event velocimetry (KF-PEV). Using the Kalman filter model to track the events generated by the particles seeded in the flow medium, KF-PEV yields the linear least squares estimate of the particle track velocities corresponding to the flow vector field. KF-PEV processes events in a computationally efficient and streaming manner (i.e., causal and iteratively updating). Our simulation-based benchmarking study with synthetic particle event data confirms that the proposed KF-PEV outperforms the conventional frame-based particle image/tracking velocimetry as well as the state-of-the-art event-based particle velocimetry methods. In a real-world water tunnel event-based sensor data experiment performed on what we believe to be the widest field view ever reported, KF-PEV accurately predicted the expected flow field of the SD7003 wing, including details such as the lower velocity in the wake and the flow separation around the underside of an angled wing.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.