Channel-Robust RF Fingerprint Identification Using Multi-Task Learning and Receiver Collaboration

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-12 DOI:10.1109/LSP.2024.3460654
Zhi Chai;Xinyong Peng;Xinran Huang;Mingye Li;Xuelin Yang
{"title":"Channel-Robust RF Fingerprint Identification Using Multi-Task Learning and Receiver Collaboration","authors":"Zhi Chai;Xinyong Peng;Xinran Huang;Mingye Li;Xuelin Yang","doi":"10.1109/LSP.2024.3460654","DOIUrl":null,"url":null,"abstract":"Robust radio frequency fingerprint identification (RFFI) is crucial for physical layer authentication, while it suffers from channel effects and requires extra overhead to increase recognition accuracy (RA). To address this, an efficient channel-robust RFFI scheme is proposed, employing a specialized multi-task learning (MTL) framework to direct the neural network (NN) toward extracting channel-robust features. In addition, receiver collaboration (RC) is utilized for data augmentation and output calibration. Experimental results demonstrate that the RA is significantly increased from 51.72% to 99.97% when using the open-resource Wi-Fi signal datasets collected from different time periods. Meanwhile, the requirements for extra data transmission, NN structure, and feature crafting in the inferring stage are dramatically simplified.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679705/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Robust radio frequency fingerprint identification (RFFI) is crucial for physical layer authentication, while it suffers from channel effects and requires extra overhead to increase recognition accuracy (RA). To address this, an efficient channel-robust RFFI scheme is proposed, employing a specialized multi-task learning (MTL) framework to direct the neural network (NN) toward extracting channel-robust features. In addition, receiver collaboration (RC) is utilized for data augmentation and output calibration. Experimental results demonstrate that the RA is significantly increased from 51.72% to 99.97% when using the open-resource Wi-Fi signal datasets collected from different time periods. Meanwhile, the requirements for extra data transmission, NN structure, and feature crafting in the inferring stage are dramatically simplified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多任务学习和接收器协作进行信道稳定射频指纹识别
稳健的射频指纹识别(RFFI)对物理层身份验证至关重要,但它受到信道效应的影响,需要额外的开销来提高识别准确率(RA)。为解决这一问题,我们提出了一种高效的信道稳健型射频指纹识别方案,采用专门的多任务学习(MTL)框架来引导神经网络(NN)提取信道稳健型特征。此外,还利用接收器协作(RC)进行数据增强和输出校准。实验结果表明,在使用从不同时间段收集的开源 Wi-Fi 信号数据集时,RA 从 51.72% 显著提高到 99.97%。同时,推断阶段对额外数据传输、NN 结构和特征制作的要求也大幅简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1