Distributed Online Ordinal Regression Based on VUS Maximization

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-09 DOI:10.1109/LSP.2024.3456629
Huan Liu;Jiankai Tu;Chunguang Li
{"title":"Distributed Online Ordinal Regression Based on VUS Maximization","authors":"Huan Liu;Jiankai Tu;Chunguang Li","doi":"10.1109/LSP.2024.3456629","DOIUrl":null,"url":null,"abstract":"Ordinal regression (OR) is a multi-class classification problem with ordered labels. The objective functions of most OR methods are based on the misclassification error. The volume under the ROC surface (VUS) is a measure of OR that quantifies the ranking ability of OR models. It can also be used as an objective function in OR. In practice, data may be collected by multiple nodes in a distributed and online manner, and is difficult to process centrally. In this paper, we intend to develop a VUS-based distributed online OR method. Computing VUS requires a sequence of data from all categories, but the available online data may not cover all categories and the required data may distribute across different nodes. Besides, the existing approximation methods of VUS are inappropriate for using in OR. To address these issues, we first propose two new surrogate losses of the VUS in OR. We then derive their decomposed formulations and propose distributed online OR algorithms based on VUS maximization (dVMOR). The experimental results demonstrate their effectiveness.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670002/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ordinal regression (OR) is a multi-class classification problem with ordered labels. The objective functions of most OR methods are based on the misclassification error. The volume under the ROC surface (VUS) is a measure of OR that quantifies the ranking ability of OR models. It can also be used as an objective function in OR. In practice, data may be collected by multiple nodes in a distributed and online manner, and is difficult to process centrally. In this paper, we intend to develop a VUS-based distributed online OR method. Computing VUS requires a sequence of data from all categories, but the available online data may not cover all categories and the required data may distribute across different nodes. Besides, the existing approximation methods of VUS are inappropriate for using in OR. To address these issues, we first propose two new surrogate losses of the VUS in OR. We then derive their decomposed formulations and propose distributed online OR algorithms based on VUS maximization (dVMOR). The experimental results demonstrate their effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 VUS 最大化的分布式在线序数回归
序数回归(Ordinal regression,OR)是一种具有有序标签的多类分类问题。大多数序列回归方法的目标函数都基于误分类误差。ROC 表面下的体积(VUS)是对 OR 的一种度量,它量化了 OR 模型的排序能力。它也可用作 OR 的目标函数。在实践中,数据可能由多个节点以分布式在线方式收集,难以集中处理。本文打算开发一种基于 VUS 的分布式在线 OR 方法。计算 VUS 需要所有类别的数据序列,但可用的在线数据可能无法覆盖所有类别,所需的数据也可能分布在不同的节点上。此外,现有的 VUS 近似方法也不适合用于 OR。为了解决这些问题,我们首先提出了两个新的替代损失。然后,我们推导出它们的分解式,并提出了基于 VUS 最大化的分布式在线 OR 算法(dVMOR)。实验结果证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1