Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-09-12 DOI:10.1109/TCC.2024.3459789
Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li
{"title":"Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum","authors":"Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li","doi":"10.1109/TCC.2024.3459789","DOIUrl":null,"url":null,"abstract":"The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1260-1272"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679090/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于跨物联网-边缘连续性多媒体分析的生成对抗式隐私保护
支持多媒体的物联网设备和边缘计算的激增使一类新的数据密集型应用成为可能。然而,分析大量的多媒体数据带来了重大的隐私挑战。我们提出了一种称为生成对抗隐私(GAP)的新框架,该框架利用生成对抗网络(gan)合成保护隐私的代理数据,用于跨物联网边缘连续体的多媒体分析。GAP仔细地干扰GAN的训练过程,在不影响效用的情况下提供严格的差分隐私保证。此外,我们还提出了动态隐私预算分配、自适应梯度裁剪和权重聚类等优化策略,以提高隐私预算约束下的收敛性和数据质量。理论分析证明,GAP在实现高保真分析的同时提供了严格的隐私保护。在真实世界的多媒体数据集上进行的大量实验表明,GAP优于现有方法,可以为各种物联网边缘应用中的保护隐私的多媒体处理产生高质量的合成数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1