Enabling Authorized Fine-Grained Data Retrieval Over Aggregated Encrypted Medical Data in Cloud-Assisted E-Health Systems

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-08-19 DOI:10.1109/TCC.2024.3445430
Wei Tang;Xiaojun Zhang;Dawu Gu;Chao Huang;Jingting Xue;Xiangyu Liang
{"title":"Enabling Authorized Fine-Grained Data Retrieval Over Aggregated Encrypted Medical Data in Cloud-Assisted E-Health Systems","authors":"Wei Tang;Xiaojun Zhang;Dawu Gu;Chao Huang;Jingting Xue;Xiangyu Liang","doi":"10.1109/TCC.2024.3445430","DOIUrl":null,"url":null,"abstract":"Encrypted medical data outsourced to cloud servers can be used for personal health certification, health monitoring, and medical research. These data are essential to support the development of the medical industry. However, the traditional peer-to-peer data-sharing paradigm can lead to data abuse by malicious data analysis centers. Moreover, the encryption used to protect users’ outsourced privacy restricts the flexibility of data retrieval. Based on the modified double trapdoor cryptosystem, we propose an authorized data retrieval scheme over aggregated encrypted medical data (ADR-AED) in cloud-assisted e-healthcare systems. In ADR-AED, patients can access and decrypt personal data and authorize the data analysis center (DAC) to retrieve corresponding data. Specifically, we design an authorized retrieval-test mechanism for a group of patients to DAC. This allows DAC to extract valuable information from a threshold number of authorized users. Additionally, each patient can flexibly retrieve fine-grained medical data in different periods and submit them to a doctor for diagnostic analysis. The security analysis and performance evaluation demonstrate the feasibility of ADR-AED in the deployment of cloud-assisted e-healthcare systems.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1131-1144"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639478/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Encrypted medical data outsourced to cloud servers can be used for personal health certification, health monitoring, and medical research. These data are essential to support the development of the medical industry. However, the traditional peer-to-peer data-sharing paradigm can lead to data abuse by malicious data analysis centers. Moreover, the encryption used to protect users’ outsourced privacy restricts the flexibility of data retrieval. Based on the modified double trapdoor cryptosystem, we propose an authorized data retrieval scheme over aggregated encrypted medical data (ADR-AED) in cloud-assisted e-healthcare systems. In ADR-AED, patients can access and decrypt personal data and authorize the data analysis center (DAC) to retrieve corresponding data. Specifically, we design an authorized retrieval-test mechanism for a group of patients to DAC. This allows DAC to extract valuable information from a threshold number of authorized users. Additionally, each patient can flexibly retrieve fine-grained medical data in different periods and submit them to a doctor for diagnostic analysis. The security analysis and performance evaluation demonstrate the feasibility of ADR-AED in the deployment of cloud-assisted e-healthcare systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在云辅助电子医疗系统中实现对聚合加密医疗数据的授权细粒度数据检索
外包给云服务器的加密医疗数据可用于个人健康认证、健康监测和医学研究。这些数据对于支持医疗行业的发展至关重要。然而,传统的点对点数据共享模式可能导致恶意数据分析中心滥用数据。此外,用于保护用户外包隐私的加密限制了数据检索的灵活性。基于改进的双活门密码系统,提出了一种云辅助电子医疗系统中聚合加密医疗数据(ADR-AED)的授权数据检索方案。在ADR-AED中,患者可以访问和解密个人数据,并授权数据分析中心(DAC)检索相应的数据。具体来说,我们为一组DAC患者设计了一种授权的检索测试机制。这使得DAC可以从授权用户的阈值数量中提取有价值的信息。此外,每个患者可以灵活地检索不同时期的细粒度医疗数据,并提交给医生进行诊断分析。安全性分析和性能评估证明了ADR-AED在云辅助电子医疗系统部署中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
DRKC: Deep Reinforcement Learning Enhanced Microservice Scheduling on Kubernetes Clusters in Cloud-Edge Environment Budget-Feasible Clock Mechanism for Hierarchical Computation Offloading in Edge-Vehicle Collaborative Computing Lightweight Conditional Privacy-Preserving Scheme for VANET Communications Comments on “Blockchain-Assisted Public-Key Encryption With Keyword Search Against Keyword Guessing Attacks for Cloud Storage” Forward-Secure Multi-User Graph Searchable Encryption for Exact Shortest Path Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1