Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis
{"title":"Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis","authors":"Maksymilian Fukś, Mariola Kędra, Łukasz Wiejaczka","doi":"10.1007/s00477-024-02803-2","DOIUrl":null,"url":null,"abstract":"<p>This study presents an analysis of the influence of climatic conditions and the operation of a dam reservoir on the occurrence of ice cover and water temperature in two rivers (natural and transformed by reservoir operations) located in the Carpathian Mountains (central Europe). The analyses are based on data obtained from four hydrological and two climatological stations. The Extreme Gradient Boosting (XGBoost) machine learning model was used to quantitatively separate the effects of climate change from the effects arising from the operation of the dam reservoir. An analysis of the effects of reservoir operation on the phase synchronization between air and river water temperatures based on a continuous wavelet transform was also conducted. The analyses showed that there has been an increase in the average air temperature of the study area in November by 1.2 °C per decade (over the period 1984–2016), accompanied by an increase in winter water temperature of 0.3 °C per decade over the same period. As water and air temperatures associated with the river not influenced by the reservoir increased, there was a simultaneous reduction in the duration of ice cover, reaching nine days per decade. The river influenced by the dam reservoir showed a 1.05 °C increase in winter water temperature from the period 1994–2007 to the period 1981–1994, for which the operation of the reservoir was 65% responsible and climatic conditions were 35% responsible. As a result of the reservoir operation, the synchronization of air and water temperatures was disrupted. Increasing water temperatures resulted in a reduction in the average annual number of days with ice cover (by 27.3 days), for which the operation of the dam reservoir was 77.5% responsible, while climatic conditions were 22.5% responsible.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02803-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an analysis of the influence of climatic conditions and the operation of a dam reservoir on the occurrence of ice cover and water temperature in two rivers (natural and transformed by reservoir operations) located in the Carpathian Mountains (central Europe). The analyses are based on data obtained from four hydrological and two climatological stations. The Extreme Gradient Boosting (XGBoost) machine learning model was used to quantitatively separate the effects of climate change from the effects arising from the operation of the dam reservoir. An analysis of the effects of reservoir operation on the phase synchronization between air and river water temperatures based on a continuous wavelet transform was also conducted. The analyses showed that there has been an increase in the average air temperature of the study area in November by 1.2 °C per decade (over the period 1984–2016), accompanied by an increase in winter water temperature of 0.3 °C per decade over the same period. As water and air temperatures associated with the river not influenced by the reservoir increased, there was a simultaneous reduction in the duration of ice cover, reaching nine days per decade. The river influenced by the dam reservoir showed a 1.05 °C increase in winter water temperature from the period 1994–2007 to the period 1981–1994, for which the operation of the reservoir was 65% responsible and climatic conditions were 35% responsible. As a result of the reservoir operation, the synchronization of air and water temperatures was disrupted. Increasing water temperatures resulted in a reduction in the average annual number of days with ice cover (by 27.3 days), for which the operation of the dam reservoir was 77.5% responsible, while climatic conditions were 22.5% responsible.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.