{"title":"An improved nonlinear dynamical model for monthly runoff prediction for data scarce basins","authors":"Longxia Qian, Nanjun Liu, Mei Hong, Suzhen Dang","doi":"10.1007/s00477-024-02773-5","DOIUrl":null,"url":null,"abstract":"<p>Making accurate and reliable predictions for monthly runoff in data scarce basins is still a major challenge. In this study, a new model, the CL-NDM, is developed by combining Convolutional Neural Network-Long Short-term Memory (CNN-LSTM) and a nonlinear dynamic model. The CL-NDM can overcome the deficiency of observed data by fusing spatial and temporal dependencies in runoff sequences at different stations. First, phase space reconstruction is used to enlarge the dimensions of the runoff sequences and reconstruct the attractors of the runoff sequences. Then, the CNN-LSTM is employed to construct the mapping between non-delay and delay attractors. Finally, the prediction set of the target variable is obtained by embedding multiple times. The CL-NDM is performed for monthly runoff prediction at eleven hydrological stations in the Weihe River, China. Compared with the CNN, LSTM and CNN-LSTM models, which require a large amount of training samples, the CL-NDM behaves much better, especially in situations with small training sample sizes. The maximum increase in R is 74%, and the maximum NSE is as large as 0.8. The maximum improvement in RMSE and MAPE is 53% and 88%, respectively. The CL-NDM has stronger ability to capture peak value while LSTM, CNN-LSTM and CNN models show obvious time lag in the prediction of peak point. The improved nonlinear dynamical model may provide a valuable method for runoff prediction in data-scarce regions.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02773-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Making accurate and reliable predictions for monthly runoff in data scarce basins is still a major challenge. In this study, a new model, the CL-NDM, is developed by combining Convolutional Neural Network-Long Short-term Memory (CNN-LSTM) and a nonlinear dynamic model. The CL-NDM can overcome the deficiency of observed data by fusing spatial and temporal dependencies in runoff sequences at different stations. First, phase space reconstruction is used to enlarge the dimensions of the runoff sequences and reconstruct the attractors of the runoff sequences. Then, the CNN-LSTM is employed to construct the mapping between non-delay and delay attractors. Finally, the prediction set of the target variable is obtained by embedding multiple times. The CL-NDM is performed for monthly runoff prediction at eleven hydrological stations in the Weihe River, China. Compared with the CNN, LSTM and CNN-LSTM models, which require a large amount of training samples, the CL-NDM behaves much better, especially in situations with small training sample sizes. The maximum increase in R is 74%, and the maximum NSE is as large as 0.8. The maximum improvement in RMSE and MAPE is 53% and 88%, respectively. The CL-NDM has stronger ability to capture peak value while LSTM, CNN-LSTM and CNN models show obvious time lag in the prediction of peak point. The improved nonlinear dynamical model may provide a valuable method for runoff prediction in data-scarce regions.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.