Can Transformers Do Enumerative Geometry?

Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto
{"title":"Can Transformers Do Enumerative Geometry?","authors":"Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto","doi":"arxiv-2408.14915","DOIUrl":null,"url":null,"abstract":"How can Transformers model and learn enumerative geometry? What is a robust\nprocedure for using Transformers in abductive knowledge discovery within a\nmathematician-machine collaboration? In this work, we introduce a new paradigm\nin computational enumerative geometry in analyzing the $\\psi$-class\nintersection numbers on the moduli space of curves. By formulating the\nenumerative problem as a continuous optimization task, we develop a\nTransformer-based model for computing $\\psi$-class intersection numbers based\non the underlying quantum Airy structure. For a finite range of genera, our\nmodel is capable of regressing intersection numbers that span an extremely wide\nrange of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive\nbias for capturing the recursive behavior of intersection numbers, we propose a\nnew activation function, Dynamic Range Activator (DRA). Moreover, given the\nsevere heteroscedasticity of $\\psi$-class intersections and the required\nprecision, we quantify the uncertainty of the predictions using Conformal\nPrediction with a dynamic sliding window that is aware of the number of marked\npoints. Next, we go beyond merely computing intersection numbers and explore\nthe enumerative \"world-model\" of the Transformers. Through a series of causal\ninference and correlational interpretability analyses, we demonstrate that\nTransformers are actually modeling Virasoro constraints in a purely data-driven\nmanner. Additionally, we provide evidence for the comprehension of several\nvalues appearing in the large genus asymptotic of $\\psi$-class intersection\nnumbers through abductive hypothesis testing.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a new paradigm in computational enumerative geometry in analyzing the $\psi$-class intersection numbers on the moduli space of curves. By formulating the enumerative problem as a continuous optimization task, we develop a Transformer-based model for computing $\psi$-class intersection numbers based on the underlying quantum Airy structure. For a finite range of genera, our model is capable of regressing intersection numbers that span an extremely wide range of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive bias for capturing the recursive behavior of intersection numbers, we propose a new activation function, Dynamic Range Activator (DRA). Moreover, given the severe heteroscedasticity of $\psi$-class intersections and the required precision, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window that is aware of the number of marked points. Next, we go beyond merely computing intersection numbers and explore the enumerative "world-model" of the Transformers. Through a series of causal inference and correlational interpretability analyses, we demonstrate that Transformers are actually modeling Virasoro constraints in a purely data-driven manner. Additionally, we provide evidence for the comprehension of several values appearing in the large genus asymptotic of $\psi$-class intersection numbers through abductive hypothesis testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变形金刚能做枚举几何吗?
变形金刚如何建模和学习枚举几何?在数学家与机器的合作中,在归纳式知识发现中使用变换器的稳健程序是什么?在这项工作中,我们引入了一种新的计算枚举几何范式,用于分析曲线模空间上的$\psi$类交点数。通过将枚举问题表述为连续优化任务,我们开发了一种基于底层量子艾里结构的基于变换器的模型,用于计算 $\psi$ 级交点数。对于有限的属概念范围,我们的模型能够回归出从 $10^{-45}$ 到 $10^{45}$ 的跨度极大的交集数。为了为捕捉交集数的递归行为提供一个适当的归纳偏置,我们提出了一个新的激活函数--动态范围激活器(DRA)。此外,考虑到$\psi$级交点的严重异方差性和所需精度,我们使用带有动态滑动窗口的共形预测(ConformalPrediction)量化了预测的不确定性,该窗口可感知标记点的数量。接下来,我们不仅仅计算交叉点数量,还探索了变形金刚的枚举 "世界模型"。通过一系列因果推理和关联可解释性分析,我们证明了变形金刚实际上是在以纯数据驱动的方式为 Virasoro 约束建模。此外,我们还通过归纳假设检验,为$\psi$类交集数的大属渐近中出现的几个值的理解提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A converse of Ax-Grothendieck theorem for étale endomorphisms of normal schemes MMP for Enriques pairs and singular Enriques varieties Moduli of Cubic fourfolds and reducible OADP surfaces Infinitesimal commutative unipotent group schemes with one-dimensional Lie algebra The second syzygy schemes of curves of large degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1