CO2 capture for environmental remediation with hollow fibre membrane: Impact of air gap and bore fluid ratio onto the morphology and performance

IF 1.8 4区 工程技术 Q3 Chemical Engineering Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-09-05 DOI:10.1002/apj.3157
Muhd Izzudin Fikry Zainuddin, Abdul Latif Ahmad, Meor Muhammad Hafiz Shah Buddin, Mohamad Alif Adnan
{"title":"CO2 capture for environmental remediation with hollow fibre membrane: Impact of air gap and bore fluid ratio onto the morphology and performance","authors":"Muhd Izzudin Fikry Zainuddin, Abdul Latif Ahmad, Meor Muhammad Hafiz Shah Buddin, Mohamad Alif Adnan","doi":"10.1002/apj.3157","DOIUrl":null,"url":null,"abstract":"Hollow fibre membrane (HFM) is favourable for carbon dioxide (CO<jats:sub>2</jats:sub>) due to its high packing density and high volume to area ratio. In this study, the effect of air gap and bore fluid ratio is explored to study its influence on the morphology and separation performance. With high dope extrusion rate (DER), the shear‐induced polymer orientation can be preserved with low air gap which come with the cost of deformed lumen. As such, the coagulant activity of the bore fluid can be reduced by introducing solvent, which in turn reduces rate of phase inversion to prevent sudden contraction of polymer at low air gap, thus allowing proper formation of lumen. With the presence of solvent, the flowability of the dope solution increased due to reduced viscosity as the bore fluid with high solvent content make contact the external coagulant. HFM spun with low air gap with the presence of solvent in the bore fluid shows increased stretched ratio due to the influence of gravitational pull upon being extruded from the spinneret. This in turn improved the polymer chain orientation due to the stretch across the spinning line. Subsequently, HFM spun with 80 wt.% of N‐methyl‐2‐pyrollidone (NMP) in the bore fluid using narrow gap spinneret with 5‐cm air gap shows the highest ideal CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> and CO<jats:sub>2</jats:sub>/CH<jats:sub>4</jats:sub> selectivity at 23.4 and 28 respectively, even though it also exhibit the lowest CO<jats:sub>2</jats:sub> permeance at only 3.1 GPU which was ascribed to the formation of dense skin layer. Meanwhile, when HFM was spun with a bigger annulus gap, the ideal CO<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub> and CO<jats:sub>2</jats:sub>/CH<jats:sub>4</jats:sub> selectivity slightly dropped, however the CO<jats:sub>2</jats:sub> permeance exhibit increment.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"38 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Hollow fibre membrane (HFM) is favourable for carbon dioxide (CO2) due to its high packing density and high volume to area ratio. In this study, the effect of air gap and bore fluid ratio is explored to study its influence on the morphology and separation performance. With high dope extrusion rate (DER), the shear‐induced polymer orientation can be preserved with low air gap which come with the cost of deformed lumen. As such, the coagulant activity of the bore fluid can be reduced by introducing solvent, which in turn reduces rate of phase inversion to prevent sudden contraction of polymer at low air gap, thus allowing proper formation of lumen. With the presence of solvent, the flowability of the dope solution increased due to reduced viscosity as the bore fluid with high solvent content make contact the external coagulant. HFM spun with low air gap with the presence of solvent in the bore fluid shows increased stretched ratio due to the influence of gravitational pull upon being extruded from the spinneret. This in turn improved the polymer chain orientation due to the stretch across the spinning line. Subsequently, HFM spun with 80 wt.% of N‐methyl‐2‐pyrollidone (NMP) in the bore fluid using narrow gap spinneret with 5‐cm air gap shows the highest ideal CO2/N2 and CO2/CH4 selectivity at 23.4 and 28 respectively, even though it also exhibit the lowest CO2 permeance at only 3.1 GPU which was ascribed to the formation of dense skin layer. Meanwhile, when HFM was spun with a bigger annulus gap, the ideal CO2/N2 and CO2/CH4 selectivity slightly dropped, however the CO2 permeance exhibit increment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用中空纤维膜捕获二氧化碳用于环境修复:气隙和孔液比对形态和性能的影响
中空纤维膜(HFM)因其高堆积密度和高体积面积比而有利于二氧化碳(CO2)的分离。本研究探讨了气隙和孔液比对形态和分离性能的影响。在高涂料挤出率(DER)条件下,剪切力引起的聚合物取向可在低气隙条件下保持,但代价是内腔变形。因此,可以通过引入溶剂来降低孔内流体的凝固活性,进而降低相位反转率,防止聚合物在低气隙时突然收缩,从而使管腔正常形成。由于溶剂含量高的孔液与外部凝固剂接触,粘度降低,从而增加了涂料溶液的流动性。由于从喷丝板挤出时受到重力拉力的影响,在孔液中含有溶剂的情况下,低气隙纺丝的高频熔融材料的拉伸比增加。这反过来又改善了聚合物链在纺丝线上的拉伸取向。随后,使用气隙为 5 厘米的窄间隙喷丝板,在孔液中加入 80 wt.% 的 N-甲基-2-吡咯烷酮(NMP)纺丝的 HFM 显示出最高的理想 CO2/N2 和 CO2/CH4 选择性,分别为 23.4 和 28,尽管它也显示出最低的 CO2 渗透率,仅为 3.1 GPU,这归因于致密表皮层的形成。同时,当 HFM 采用更大的环隙纺丝时,理想的 CO2/N2 和 CO2/CH4 选择性略有下降,但 CO2 渗透率却有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
期刊最新文献
Efficient activation of N and S co-doped magnetic biochar for peroxomonosulfate degradation of tetracycline Sulfonated carbon–based heterogeneous acid catalysts in direct biomass redox flow fuel cell: A review Enhanced peroxidase‐like activity of MnFe2O4 nanoparticles on halloysite nanotubes for uric acid detection CO2 capture for environmental remediation with hollow fibre membrane: Impact of air gap and bore fluid ratio onto the morphology and performance An insight into the investigation of partition characteristics of flow fields based on chaos fractal theory in a jet impingement–negative‐pressure reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1