{"title":"Adaptive structural enhanced representation learning for deep document clustering","authors":"Jingjing Xue, Ruizhang Huang, Ruina Bai, Yanping Chen, Yongbin Qin, Chuan Lin","doi":"10.1007/s10489-024-05791-6","DOIUrl":null,"url":null,"abstract":"<p>Structural deep document clustering methods, which leverage both structural information and inherent data properties to learn document representations using deep neural networks for clustering, have recently garnered increased research interest. However, the structural information used in these methods is usually static and remains unchanged during the clustering process. This can negatively impact the clustering results if the initial structural information is inaccurate or noisy. In this paper, we present an adaptive structural enhanced representation learning network for document clustering. This network can adjust the structural information with the help of clustering partitions and consists of two components: an adaptive structure learner, which automatically evaluates and adjusts structural information at both the document and term levels to facilitate the learning of more effective structural information, and a structural enhanced representation learning network. The latter incorporates integrates this adjusted structural information to enhance text document representations while reducing noise, thereby improving the clustering results. The iterative process between clustering results and the adaptive structural enhanced representation learning network promotes mutual optimization, progressively enhancing model performance. Extensive experiments on various text document datasets demonstrate that the proposed method outperforms several state-of-the-art methods.</p><p>The overall framework of adaptive structural enhanced representation learning network</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 23","pages":"12315 - 12331"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05791-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Structural deep document clustering methods, which leverage both structural information and inherent data properties to learn document representations using deep neural networks for clustering, have recently garnered increased research interest. However, the structural information used in these methods is usually static and remains unchanged during the clustering process. This can negatively impact the clustering results if the initial structural information is inaccurate or noisy. In this paper, we present an adaptive structural enhanced representation learning network for document clustering. This network can adjust the structural information with the help of clustering partitions and consists of two components: an adaptive structure learner, which automatically evaluates and adjusts structural information at both the document and term levels to facilitate the learning of more effective structural information, and a structural enhanced representation learning network. The latter incorporates integrates this adjusted structural information to enhance text document representations while reducing noise, thereby improving the clustering results. The iterative process between clustering results and the adaptive structural enhanced representation learning network promotes mutual optimization, progressively enhancing model performance. Extensive experiments on various text document datasets demonstrate that the proposed method outperforms several state-of-the-art methods.
The overall framework of adaptive structural enhanced representation learning network
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.