SSGCRTN: a space-specific graph convolutional recurrent transformer network for traffic prediction

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-09-07 DOI:10.1007/s10489-024-05815-1
Shiyu Yang, Qunyong Wu, Yuhang Wang, Tingyu Lin
{"title":"SSGCRTN: a space-specific graph convolutional recurrent transformer network for traffic prediction","authors":"Shiyu Yang,&nbsp;Qunyong Wu,&nbsp;Yuhang Wang,&nbsp;Tingyu Lin","doi":"10.1007/s10489-024-05815-1","DOIUrl":null,"url":null,"abstract":"<div><p>Current research often formalizes traffic prediction tasks as spatio-temporal graph modeling problems. Despite some progress, this approach still has the following limitations. First, space can be divided into intrinsic and latent spaces. Static graphs in intrinsic space lack flexibility when facing changing prediction tasks, while dynamic relationships in latent space are influenced by multiple factors. A deep understanding of specific traffic patterns in different spaces is crucial for accurately modeling spatial dependencies. Second, most studies focus on correlations in sequential time periods, neglecting both reverse and global temporal correlations. This oversight leads to incomplete temporal representations in models. In this work, we propose a Space-Specific Graph Convolutional Recurrent Transformer Network (SSGCRTN) to address these limitations simultaneously. For the spatial aspect, we propose a space-specific graph convolution operation to identify patterns unique to each space. For the temporal aspect, we introduce a spatio-temporal interaction module that integrates spatial and temporal domain knowledge of nodes at multiple granularities. This module learns and utilizes parallel spatio-temporal relationships between different time points from both forward and backward perspectives, revealing latent patterns in spatio-temporal associations. Additionally, we use a transformer-based global temporal fusion module to capture global spatio-temporal correlations. We conduct experiments on four real-world traffic flow datasets (PeMS03/04/07/08) and two traffic speed datasets (PeMSD7(M)/(L)), achieving better performance than existing technologies. Notably, on the PeMS08 dataset, our model improves the MAE by 6.41% compared to DGCRN. The code of SSGCRTN is available at https://github.com/OvOYu/SSGCRTN.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 22","pages":"11978 - 11994"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05815-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Current research often formalizes traffic prediction tasks as spatio-temporal graph modeling problems. Despite some progress, this approach still has the following limitations. First, space can be divided into intrinsic and latent spaces. Static graphs in intrinsic space lack flexibility when facing changing prediction tasks, while dynamic relationships in latent space are influenced by multiple factors. A deep understanding of specific traffic patterns in different spaces is crucial for accurately modeling spatial dependencies. Second, most studies focus on correlations in sequential time periods, neglecting both reverse and global temporal correlations. This oversight leads to incomplete temporal representations in models. In this work, we propose a Space-Specific Graph Convolutional Recurrent Transformer Network (SSGCRTN) to address these limitations simultaneously. For the spatial aspect, we propose a space-specific graph convolution operation to identify patterns unique to each space. For the temporal aspect, we introduce a spatio-temporal interaction module that integrates spatial and temporal domain knowledge of nodes at multiple granularities. This module learns and utilizes parallel spatio-temporal relationships between different time points from both forward and backward perspectives, revealing latent patterns in spatio-temporal associations. Additionally, we use a transformer-based global temporal fusion module to capture global spatio-temporal correlations. We conduct experiments on four real-world traffic flow datasets (PeMS03/04/07/08) and two traffic speed datasets (PeMSD7(M)/(L)), achieving better performance than existing technologies. Notably, on the PeMS08 dataset, our model improves the MAE by 6.41% compared to DGCRN. The code of SSGCRTN is available at https://github.com/OvOYu/SSGCRTN.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SSGCRTN:用于交通预测的空间特定图卷积递归变换网络
目前的研究通常将交通预测任务形式化为时空图建模问题。尽管取得了一些进展,但这种方法仍有以下局限性。首先,空间可分为内在空间和潜在空间。内在空间中的静态图在面对不断变化的预测任务时缺乏灵活性,而潜在空间中的动态关系则受到多种因素的影响。深入了解不同空间的具体交通模式对于准确建立空间依赖关系模型至关重要。其次,大多数研究侧重于连续时间段内的相关性,忽略了反向和全局时间相关性。这种疏忽导致模型中的时间表示不完整。在这项工作中,我们提出了一种空间特定图卷积递归变换网络(SSGCRTN),以同时解决这些局限性。在空间方面,我们提出了一种特定空间的图卷积操作,以识别每个空间独有的模式。在时间方面,我们引入了一个时空交互模块,该模块在多个粒度上整合了节点的空间和时间领域知识。该模块从前向和后向角度学习并利用不同时间点之间的并行时空关系,从而揭示时空关联中的潜在模式。此外,我们还使用基于变压器的全局时空融合模块来捕捉全局时空关联。我们在四个真实世界交通流量数据集(PeMS03/04/07/08)和两个交通速度数据集(PeMSD7(M)/(L))上进行了实验,取得了比现有技术更好的性能。值得注意的是,在 PeMS08 数据集上,与 DGCRN 相比,我们的模型提高了 6.41% 的 MAE。SSGCRTN 的代码见 https://github.com/OvOYu/SSGCRTN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
ZPDSN: spatio-temporal meteorological forecasting with topological data analysis DTR4Rec: direct transition relationship for sequential recommendation Unsupervised anomaly detection and imputation in noisy time series data for enhancing load forecasting A prototype evolution network for relation extraction Highway spillage detection using an improved STPM anomaly detection network from a surveillance perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1