Improved generative adversarial imputation networks for missing data

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-09-05 DOI:10.1007/s10489-024-05814-2
Xiwen Qin, Hongyu Shi, Xiaogang Dong, Siqi Zhang, Liping Yuan
{"title":"Improved generative adversarial imputation networks for missing data","authors":"Xiwen Qin,&nbsp;Hongyu Shi,&nbsp;Xiaogang Dong,&nbsp;Siqi Zhang,&nbsp;Liping Yuan","doi":"10.1007/s10489-024-05814-2","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional statistical methods for missing data imputation have been challenging to adapt to the large-scale new features of high dimensionality. Moreover, the missing data imputation methods based on Generative Adversarial Networks (GAN) are plagued with gradient vanishing and mode collapse. To address these problems, we have proposed a new imputation method based on GAN to enhance the accuracy of missing data imputation in this study. We refer to our missing data method using Generative Adversarial Imputation Networks (MGAIN). Specifically, the least squares loss is first introduced to solve the gradient vanishing problem and ensure the high quality of the output data in MGAIN. To mitigate mode collapse, dual discriminator is used in the model, which improved the diversity of output data to avoid the degradation of computational performance caused by single data. As a result, MGAIN generates rich and accurate imputation values. The MGAIN enhances imputation accuracy and reduces the root mean square error metric by 21.66% compared to the baseline model. We evaluated our method on baseline datasets and found that MGAIN outperformed state-of-the-art and popular imputation methods, demonstrating its effectiveness and superiority.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 21","pages":"11068 - 11082"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05814-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional statistical methods for missing data imputation have been challenging to adapt to the large-scale new features of high dimensionality. Moreover, the missing data imputation methods based on Generative Adversarial Networks (GAN) are plagued with gradient vanishing and mode collapse. To address these problems, we have proposed a new imputation method based on GAN to enhance the accuracy of missing data imputation in this study. We refer to our missing data method using Generative Adversarial Imputation Networks (MGAIN). Specifically, the least squares loss is first introduced to solve the gradient vanishing problem and ensure the high quality of the output data in MGAIN. To mitigate mode collapse, dual discriminator is used in the model, which improved the diversity of output data to avoid the degradation of computational performance caused by single data. As a result, MGAIN generates rich and accurate imputation values. The MGAIN enhances imputation accuracy and reduces the root mean square error metric by 21.66% compared to the baseline model. We evaluated our method on baseline datasets and found that MGAIN outperformed state-of-the-art and popular imputation methods, demonstrating its effectiveness and superiority.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对缺失数据的改进生成式对抗估算网络
传统的缺失数据估算统计方法在适应大规模高维新特征方面一直面临挑战。此外,基于生成对抗网络(GAN)的缺失数据估算方法也存在梯度消失和模式崩溃的问题。针对这些问题,我们在本研究中提出了一种基于 GAN 的新估算方法,以提高缺失数据估算的准确性。我们称这种缺失数据估算方法为生成对抗估算网络(MGAIN)。具体来说,首先引入最小二乘损失来解决梯度消失问题,确保 MGAIN 输出数据的高质量。为了缓解模式崩溃,模型中使用了双判别器,提高了输出数据的多样性,避免了单一数据造成的计算性能下降。因此,MGAIN 可以生成丰富而准确的估算值。与基线模型相比,MGAIN 提高了估算的准确性,并将均方根误差指标降低了 21.66%。我们在基线数据集上对我们的方法进行了评估,发现 MGAIN 的性能优于最先进和流行的估算方法,这证明了它的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
ZPDSN: spatio-temporal meteorological forecasting with topological data analysis DTR4Rec: direct transition relationship for sequential recommendation Unsupervised anomaly detection and imputation in noisy time series data for enhancing load forecasting A prototype evolution network for relation extraction Highway spillage detection using an improved STPM anomaly detection network from a surveillance perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1