Numerical study of Darcy's law of yield stress fluids on a deep tree-like network

Stéphane Munier, Alberto Rosso
{"title":"Numerical study of Darcy's law of yield stress fluids on a deep tree-like network","authors":"Stéphane Munier, Alberto Rosso","doi":"arxiv-2409.03480","DOIUrl":null,"url":null,"abstract":"Understanding the flow dynamics of yield stress fluids in porous media\npresents a substantial challenge. Both experiments and extensive numerical\nsimulations frequently show a non-linear relationship between the flow rate and\nthe pressure gradient, deviating from the traditional Darcy law. In this\narticle, we consider a tree-like porous structure and utilize an exact mapping\nwith the directed polymer (DP) with disordered bond energies on the Cayley\ntree. Specifically, we adapt an algorithm recently introduced by Brunet et al.\n[Europhys. Lett. 131, 40002 (2020)] to simulate exactly the tip region of\nbranching random walks with the help of a spinal decomposition, to accurately\ncompute the flow on extensive trees with several thousand generations. Our\nresults confirm the asymptotic predictions proposed by Schimmenti et al. [Phys.\nRev. E 108, L023102 (2023)], tested therein only for moderate trees of about 20\ngenerations.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the flow dynamics of yield stress fluids in porous media presents a substantial challenge. Both experiments and extensive numerical simulations frequently show a non-linear relationship between the flow rate and the pressure gradient, deviating from the traditional Darcy law. In this article, we consider a tree-like porous structure and utilize an exact mapping with the directed polymer (DP) with disordered bond energies on the Cayley tree. Specifically, we adapt an algorithm recently introduced by Brunet et al. [Europhys. Lett. 131, 40002 (2020)] to simulate exactly the tip region of branching random walks with the help of a spinal decomposition, to accurately compute the flow on extensive trees with several thousand generations. Our results confirm the asymptotic predictions proposed by Schimmenti et al. [Phys. Rev. E 108, L023102 (2023)], tested therein only for moderate trees of about 20 generations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深层树状网络上屈服应力流体的达西定律数值研究
了解屈服应力流体在多孔介质中的流动动力学是一项巨大的挑战。实验和大量的数值模拟经常显示流速与压力梯度之间存在非线性关系,偏离了传统的达西定律。在本文中,我们考虑了树状多孔结构,并利用有向聚合物(DP)与 Cayleytree 上无序键能的精确映射。具体来说,我们调整了 Brunet 等人[Europhys. Lett. 131, 40002 (2020)]最近引入的算法,在脊柱分解的帮助下精确模拟分支随机漫步的顶端区域,从而精确计算数千代广泛树上的流动。我们的结果证实了 Schimmenti 等人[Phys.Rev. E 108, L023102 (2023)]提出的渐进预测,但他们只对约 20 代的中等树进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1