Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions

Ba Phi Nguyen, Kihong Kim
{"title":"Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions","authors":"Ba Phi Nguyen, Kihong Kim","doi":"arxiv-2408.09339","DOIUrl":null,"url":null,"abstract":"We conduct a numerical investigation into wave propagation and localization\nin one-dimensional lattices subject to nonlinear disorder, focusing on cases\nwith fixed input conditions. Utilizing a discrete nonlinear Schr\\\"odinger\nequation with Kerr-type nonlinearity and a random coefficient, we compute the\naverages and variances of the transmittance, $T$, and its logarithm, as\nfunctions of the system size $L$, while maintaining constant intensity for the\nincident wave. In cases of purely nonlinear disorder, we observe power-law\nlocalization characterized by $\\langle T \\rangle \\propto L^{-\\gamma_a}$ and\n$\\langle \\ln T \\rangle \\approx -\\gamma_g \\ln L$ for sufficiently large $L$. At\nlow input intensities, a transition from exponential to power-law decay in\n$\\langle T \\rangle$ occurs as $L$ increases. The exponents $\\gamma_a$ and\n$\\gamma_g$ are nearly identical, converging to approximately 0.5 as the\nstrength of the nonlinear disorder, $\\beta$, increases. Additionally, the\nvariance of $T$ decays according to a power law with an exponent close to 1,\nand the variance of $\\ln T$ approaches a small constant as $L$ increases. These\nfindings are consistent with an underlying log-normal distribution of $T$ and\nsuggest that wave propagation behavior becomes nearly deterministic as the\nsystem size increases. When both linear and nonlinear disorders are present, we\nobserve a transition from power-law to exponential decay in transmittance with\nincreasing $L$ when the strength of linear disorder, $V$, is less than $\\beta$.\nAs $V$ increases, the region exhibiting power-law localization diminishes and\neventually disappears when $V$ exceeds $\\beta$, leading to standard Anderson\nlocalization.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schr\"odinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, $T$, and its logarithm, as functions of the system size $L$, while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by $\langle T \rangle \propto L^{-\gamma_a}$ and $\langle \ln T \rangle \approx -\gamma_g \ln L$ for sufficiently large $L$. At low input intensities, a transition from exponential to power-law decay in $\langle T \rangle$ occurs as $L$ increases. The exponents $\gamma_a$ and $\gamma_g$ are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, $\beta$, increases. Additionally, the variance of $T$ decays according to a power law with an exponent close to 1, and the variance of $\ln T$ approaches a small constant as $L$ increases. These findings are consistent with an underlying log-normal distribution of $T$ and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing $L$ when the strength of linear disorder, $V$, is less than $\beta$. As $V$ increases, the region exhibiting power-law localization diminishes and eventually disappears when $V$ exceeds $\beta$, leading to standard Anderson localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定输入条件下具有非线性无序的一维系统中的幂律局部化
我们对非线性无序一维晶格中的波传播和定位进行了数值研究,重点是具有固定输入条件的情况。利用具有 Kerr 型非线性和随机系数的离散非线性 Schr\"odingerequation,我们计算了透射率 $T$ 及其对数作为系统大小 $L$ 的函数的平均值和方差,同时保持入射波的强度不变。在纯粹非线性无序的情况下,我们观察到功率定位的特征是:在足够大的 L 值下,角 T 和角 L 的对数为 L^{-\gamma_a}$ 和角 T 和角 L 的对数为近似-\gamma_g \ln L$ 。在输入强度较低时,随着 $L 的增加,$langle T (rangle)会从指数衰减过渡到幂律衰减。指数$\gamma_a$和$\gamma_g$几乎相同,随着非线性无序强度$\beta$的增加,指数趋近于约0.5。此外,随着 $L$ 的增加,$T$ 的方差按照指数接近 1 的幂律衰减,而 $\ln T$ 的方差接近一个小常数。这些发现与 $T$ 的基本对数正态分布一致,并表明随着系统规模的增大,波的传播行为变得近乎确定性。当线性紊乱和非线性紊乱同时存在时,当线性紊乱的强度 $V$ 小于 $\beta$ 时,我们观察到透射率在 $L$ 增加时从幂律衰减过渡到指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1