Emerging properties of the degree distribution in large non-growing networks

Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella
{"title":"Emerging properties of the degree distribution in large non-growing networks","authors":"Jonathan Franceschi, Lorenzo Pareschi, Mattia Zanella","doi":"arxiv-2409.06099","DOIUrl":null,"url":null,"abstract":"The degree distribution is a key statistical indicator in network theory,\noften used to understand how information spreads across connected nodes. In\nthis paper, we focus on non-growing networks formed through a rewiring\nalgorithm and develop kinetic Boltzmann-type models to capture the emergence of\ndegree distributions that characterize both preferential attachment networks\nand random networks. Under a suitable mean-field scaling, these models reduce\nto a Fokker-Planck-type partial differential equation with an affine diffusion\ncoefficient, that is consistent with a well-established master equation for\ndiscrete rewiring processes. We further analyze the convergence to equilibrium\nfor this class of Fokker-Planck equations, demonstrating how different regimes\n-- ranging from exponential to algebraic rates -- depend on network parameters.\nOur results provide a unified framework for modeling degree distributions in\nnon-growing networks and offer insights into the long-time behavior of such\nsystems.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The degree distribution is a key statistical indicator in network theory, often used to understand how information spreads across connected nodes. In this paper, we focus on non-growing networks formed through a rewiring algorithm and develop kinetic Boltzmann-type models to capture the emergence of degree distributions that characterize both preferential attachment networks and random networks. Under a suitable mean-field scaling, these models reduce to a Fokker-Planck-type partial differential equation with an affine diffusion coefficient, that is consistent with a well-established master equation for discrete rewiring processes. We further analyze the convergence to equilibrium for this class of Fokker-Planck equations, demonstrating how different regimes -- ranging from exponential to algebraic rates -- depend on network parameters. Our results provide a unified framework for modeling degree distributions in non-growing networks and offer insights into the long-time behavior of such systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型非增长型网络度分布的新特性
度分布是网络理论中的一个关键统计指标,通常用于理解信息如何在连接节点间传播。在本文中,我们重点研究了通过重新布线算法形成的非增长网络,并建立了动力学玻尔兹曼型模型,以捕捉作为优先连接网络和随机网络特征的度分布的出现。在合适的均场缩放条件下,这些模型简化为具有仿射扩散系数的福克-普朗克偏微分方程,这与离散重布线过程的成熟主方程是一致的。我们进一步分析了这一类福克-普朗克方程向平衡的收敛,证明了从指数速率到代数速率的不同状态是如何依赖于网络参数的。我们的结果为非增长网络中的学位分布建模提供了一个统一的框架,并为此类系统的长期行为提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuity equation and fundamental diagram of pedestrians Anomalous behavior of Replicator dynamics for the Prisoner's Dilemma on diluted lattices Quantifying the role of supernatural entities and the effect of missing data in Irish sagas Crossing the disciplines -- a starter toolkit for researchers who wish to explore early Irish literature Female representation across mythologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1