What Makes a Maze Look Like a Maze?

Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, Noah D. Goodman, Jiajun Wu
{"title":"What Makes a Maze Look Like a Maze?","authors":"Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, Noah D. Goodman, Jiajun Wu","doi":"arxiv-2409.08202","DOIUrl":null,"url":null,"abstract":"A unique aspect of human visual understanding is the ability to flexibly\ninterpret abstract concepts: acquiring lifted rules explaining what they\nsymbolize, grounding them across familiar and unfamiliar contexts, and making\npredictions or reasoning about them. While off-the-shelf vision-language models\nexcel at making literal interpretations of images (e.g., recognizing object\ncategories such as tree branches), they still struggle to make sense of such\nvisual abstractions (e.g., how an arrangement of tree branches may form the\nwalls of a maze). To address this challenge, we introduce Deep Schema Grounding\n(DSG), a framework that leverages explicit structured representations of visual\nabstractions for grounding and reasoning. At the core of DSG are\nschemas--dependency graph descriptions of abstract concepts that decompose them\ninto more primitive-level symbols. DSG uses large language models to extract\nschemas, then hierarchically grounds concrete to abstract components of the\nschema onto images with vision-language models. The grounded schema is used to\naugment visual abstraction understanding. We systematically evaluate DSG and\ndifferent methods in reasoning on our new Visual Abstractions Dataset, which\nconsists of diverse, real-world images of abstract concepts and corresponding\nquestion-answer pairs labeled by humans. We show that DSG significantly\nimproves the abstract visual reasoning performance of vision-language models,\nand is a step toward human-aligned understanding of visual abstractions.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A unique aspect of human visual understanding is the ability to flexibly interpret abstract concepts: acquiring lifted rules explaining what they symbolize, grounding them across familiar and unfamiliar contexts, and making predictions or reasoning about them. While off-the-shelf vision-language models excel at making literal interpretations of images (e.g., recognizing object categories such as tree branches), they still struggle to make sense of such visual abstractions (e.g., how an arrangement of tree branches may form the walls of a maze). To address this challenge, we introduce Deep Schema Grounding (DSG), a framework that leverages explicit structured representations of visual abstractions for grounding and reasoning. At the core of DSG are schemas--dependency graph descriptions of abstract concepts that decompose them into more primitive-level symbols. DSG uses large language models to extract schemas, then hierarchically grounds concrete to abstract components of the schema onto images with vision-language models. The grounded schema is used to augment visual abstraction understanding. We systematically evaluate DSG and different methods in reasoning on our new Visual Abstractions Dataset, which consists of diverse, real-world images of abstract concepts and corresponding question-answer pairs labeled by humans. We show that DSG significantly improves the abstract visual reasoning performance of vision-language models, and is a step toward human-aligned understanding of visual abstractions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
是什么让迷宫看起来像迷宫?
人类视觉理解能力的一个独特方面是灵活解释抽象概念的能力:获得解释抽象概念所代表含义的提升规则,在熟悉和不熟悉的语境中为它们提供基础,并对它们进行预测或推理。虽然现成的视觉语言模型在对图像进行字面解释(如识别树枝等物体类别)方面表现出色,但在理解这类视觉抽象概念(如树枝的排列如何构成迷宫的墙壁)方面仍有困难。为了应对这一挑战,我们引入了深度模式基础(DSG),这是一种利用视觉抽象的显式结构化表示来进行基础和推理的框架。DSG 的核心是模式--抽象概念的依赖图描述,它将抽象概念分解为更原始的符号。DSG 使用大型语言模型来提取模式,然后通过视觉语言模型将模式中从具体到抽象的组成部分分层地建立在图像上。基础模式用于增强视觉抽象理解。我们在新的视觉抽象数据集(Visual Abstractions Dataset)上系统地评估了 DSG 和不同方法的推理效果,该数据集包含各种真实世界的抽象概念图像和由人类标注的相应问答对。我们的研究表明,DSG 显著提高了视觉语言模型的抽象视觉推理性能,并向人类对视觉抽象概念的理解迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1