Tunability of topological edge states in germanene at room temperature

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Chemistry C Pub Date : 2024-08-27 DOI:10.1039/D4TC02367F
Dennis J. Klaassen, Ilias Boutis, Carolien Castenmiller and Pantelis Bampoulis
{"title":"Tunability of topological edge states in germanene at room temperature","authors":"Dennis J. Klaassen, Ilias Boutis, Carolien Castenmiller and Pantelis Bampoulis","doi":"10.1039/D4TC02367F","DOIUrl":null,"url":null,"abstract":"<p >Germanene is a two-dimensional topological insulator with a large topological band gap. For its use in low-energy electronics, such as topological field effect transistors and interconnects, it is essential that its topological edge states remain intact at room temperature. In this study, we examine these properties in germanene using scanning tunneling microscopy and spectroscopy at 300 K and compare the results with data obtained at 77 K. Our findings show that the edge states persist at room temperature, although thermal effects cause smearing of the bulk band gap. Additionally, we demonstrate that, even at room temperature, applying an external perpendicular electric field switches the topological states of germanene off. These findings indicate that germanene's topological properties can be maintained and controlled at room temperature, making it a promising material for low-energy electronic applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/tc/d4tc02367f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02367f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Germanene is a two-dimensional topological insulator with a large topological band gap. For its use in low-energy electronics, such as topological field effect transistors and interconnects, it is essential that its topological edge states remain intact at room temperature. In this study, we examine these properties in germanene using scanning tunneling microscopy and spectroscopy at 300 K and compare the results with data obtained at 77 K. Our findings show that the edge states persist at room temperature, although thermal effects cause smearing of the bulk band gap. Additionally, we demonstrate that, even at room temperature, applying an external perpendicular electric field switches the topological states of germanene off. These findings indicate that germanene's topological properties can be maintained and controlled at room temperature, making it a promising material for low-energy electronic applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下锗烯拓扑边缘态的可调谐性
锗烯是一种二维拓扑绝缘体,具有很大的拓扑带隙。要将其用于拓扑场效应晶体管和互连器件等低能电子器件,其拓扑边缘态在室温下保持完好无损至关重要。在这项研究中,我们使用扫描隧道显微镜和光谱仪在 300 K 温度下研究了锗烯的这些特性,并将结果与在 77 K 温度下获得的数据进行了比较。我们的研究结果表明,虽然热效应会导致体带隙的涂抹,但边缘态在室温下仍然存在。此外,我们还证明,即使在室温下,施加外部垂直电场也会使锗烯的拓扑状态发生切换。这些发现表明,锗烯的拓扑特性可以在室温下保持和控制,使其成为低能电子应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
期刊最新文献
Back cover Back cover Correction: Charge transfer properties of novel linear carbon chain-based dyes Back cover Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1