{"title":"Edge-based event-triggered output feedback control for stochastic multi-agent systems","authors":"Chuanxi Zhu, Beibei Chang","doi":"10.1002/acs.3878","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article considers the problem of edge-based event-triggered output feedback control for linear multi-agent systems (MASs) with state-independent process and measurement noise under undirected communication topologies. The main breakthroughs are the design of distributed event-triggered output feedback control strategy and the stochastic stability analysis. Toward this, first, according to Kalman filtering theory, An observer is contrasted to optimally estimate the state of each agent. Next, a novel edge-based event-triggered mechanism (EBETM) is designed to reduce the communication frequency among agents effectively, and a positive interval between events is enforced in EBETM, which can eliminate the Zeno behavior. Then, stability of the estimation error and the consensus error systems is analyzed, the execution error is estimated and the almost sure consensus is achieved. Finally, a numerical example is given to show that MASs achieves almost sure consensus and there is a positive interval between the events of all edges.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 10","pages":"3346-3360"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3878","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article considers the problem of edge-based event-triggered output feedback control for linear multi-agent systems (MASs) with state-independent process and measurement noise under undirected communication topologies. The main breakthroughs are the design of distributed event-triggered output feedback control strategy and the stochastic stability analysis. Toward this, first, according to Kalman filtering theory, An observer is contrasted to optimally estimate the state of each agent. Next, a novel edge-based event-triggered mechanism (EBETM) is designed to reduce the communication frequency among agents effectively, and a positive interval between events is enforced in EBETM, which can eliminate the Zeno behavior. Then, stability of the estimation error and the consensus error systems is analyzed, the execution error is estimated and the almost sure consensus is achieved. Finally, a numerical example is given to show that MASs achieves almost sure consensus and there is a positive interval between the events of all edges.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.