Ruolin Cao, Fangyu Du, Zhiqiang Liu, Pengcheng Cai, Minggang Qi, Wei Xiao, Xuefei Bao and Guoliang Chen
{"title":"The synthesis and bioactivities of ROCK2 inhibitors with 1,2-dithiolan-3-yl motif†","authors":"Ruolin Cao, Fangyu Du, Zhiqiang Liu, Pengcheng Cai, Minggang Qi, Wei Xiao, Xuefei Bao and Guoliang Chen","doi":"10.1039/D4MD00438H","DOIUrl":null,"url":null,"abstract":"<p >Rho-associated coiled-coil containing kinase (ROCK) plays an important role in inflammation. Herein, a series of compounds were designed and synthesized as ROCK inhibitors based on the structure-based drug design (SBDD) strategy and were evaluated for cytotoxicity, antioxidant activity and anti-inflammatory activity. Among them, compound <strong>DC24</strong> was identified as the optimal hit in enzymatic screening with an IC<small><sub>50</sub></small> value of 0.124 μM against ROCK2 and 50-fold selectivity over ROCK1. <strong>DC24</strong> has a novel lipid amide scaffold with a bis(4-fluorophenyl)methyl substituent, and <strong>DC24</strong> is the first ROCK2 inhibitor interacting with the hinge region of ROCK2 <em>via</em> the 1,2-dithiolan-3-yl motif, which has been confirmed by the binding model of <strong>DC24</strong> with ROCK2. In a complete Freund's adjuvant (CFA) induced acute inflammation model, <strong>DC24</strong> at a dose of 5 mg kg<small><sup>−1</sup></small> exhibited an anti-inflammatory effect better than that of belumosudil. Furthermore, <strong>DC24</strong> exhibits good safety <em>in vivo</em>.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3576-3596"},"PeriodicalIF":3.5970,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00438h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Rho-associated coiled-coil containing kinase (ROCK) plays an important role in inflammation. Herein, a series of compounds were designed and synthesized as ROCK inhibitors based on the structure-based drug design (SBDD) strategy and were evaluated for cytotoxicity, antioxidant activity and anti-inflammatory activity. Among them, compound DC24 was identified as the optimal hit in enzymatic screening with an IC50 value of 0.124 μM against ROCK2 and 50-fold selectivity over ROCK1. DC24 has a novel lipid amide scaffold with a bis(4-fluorophenyl)methyl substituent, and DC24 is the first ROCK2 inhibitor interacting with the hinge region of ROCK2 via the 1,2-dithiolan-3-yl motif, which has been confirmed by the binding model of DC24 with ROCK2. In a complete Freund's adjuvant (CFA) induced acute inflammation model, DC24 at a dose of 5 mg kg−1 exhibited an anti-inflammatory effect better than that of belumosudil. Furthermore, DC24 exhibits good safety in vivo.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.