Artificial intelligence-based expert weighted quantum picture fuzzy rough sets and recommendation system for metaverse investment decision-making priorities

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-09-05 DOI:10.1007/s10462-024-10905-0
Gang Kou, Hasan Dinçer, Dragan Pamucar, Serhat Yüksel, Muhammet Deveci, Serkan Eti
{"title":"Artificial intelligence-based expert weighted quantum picture fuzzy rough sets and recommendation system for metaverse investment decision-making priorities","authors":"Gang Kou,&nbsp;Hasan Dinçer,&nbsp;Dragan Pamucar,&nbsp;Serhat Yüksel,&nbsp;Muhammet Deveci,&nbsp;Serkan Eti","doi":"10.1007/s10462-024-10905-0","DOIUrl":null,"url":null,"abstract":"<div><p>There should be some improvements to increase the performance of Metaverse investments. However, businesses need to focus on the most important actions to provide cost effectiveness in this process. In summary, a new study is needed in which a priority analysis is made for the performance indicators of Metaverse investments. Accordingly, this study aims to evaluate the main determinants of the performance of the metaverse investments. Within this context, a novel model is created that has four different stages. The first stage is related to the prioritizing the experts with artificial intelligence-based decision-making method. Secondly, missing evaluations are estimated by expert recommendation system. Thirdly, the criteria are weighted with Quantum picture fuzzy rough sets-based (QPFR) M-Step-wise Weight Assessment Ratio Analysis (SWARA). Finally, investment decision-making priorities are ranked by QPFR VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje). The main contribution of this study is the integration of the artificial intelligence methodology to the fuzzy decision-making approach for the purpose of computing the weights of the decision makers. Owing to this condition, the evaluations of these people are examined according to their qualifications. This situation has a positive contribution to make more effective evaluations. Organizational effectiveness is found to be the most important factor in improving the performance of metaverse investments. Similarly, it is also identified that it is important for businesses to ensure technological improvements in the development of Metaverse investments. On the other side, the ranking results indicate that regulatory framework is the most critical alternative in this regard.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10905-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10905-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

There should be some improvements to increase the performance of Metaverse investments. However, businesses need to focus on the most important actions to provide cost effectiveness in this process. In summary, a new study is needed in which a priority analysis is made for the performance indicators of Metaverse investments. Accordingly, this study aims to evaluate the main determinants of the performance of the metaverse investments. Within this context, a novel model is created that has four different stages. The first stage is related to the prioritizing the experts with artificial intelligence-based decision-making method. Secondly, missing evaluations are estimated by expert recommendation system. Thirdly, the criteria are weighted with Quantum picture fuzzy rough sets-based (QPFR) M-Step-wise Weight Assessment Ratio Analysis (SWARA). Finally, investment decision-making priorities are ranked by QPFR VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje). The main contribution of this study is the integration of the artificial intelligence methodology to the fuzzy decision-making approach for the purpose of computing the weights of the decision makers. Owing to this condition, the evaluations of these people are examined according to their qualifications. This situation has a positive contribution to make more effective evaluations. Organizational effectiveness is found to be the most important factor in improving the performance of metaverse investments. Similarly, it is also identified that it is important for businesses to ensure technological improvements in the development of Metaverse investments. On the other side, the ranking results indicate that regulatory framework is the most critical alternative in this regard.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的专家加权量子图模糊粗糙集和元投资决策优先级推荐系统
要提高 Metaverse 投资的绩效,还需要做出一些改进。不过,企业需要把重点放在最重要的行动上,以便在这一过程中实现成本效益。总之,需要开展一项新的研究,对 Metaverse 投资的绩效指标进行重点分析。因此,本研究旨在评估元数据投资绩效的主要决定因素。在此背景下,我们创建了一个包含四个不同阶段的新模型。第一阶段是利用基于人工智能的决策方法确定专家的优先次序。第二,通过专家推荐系统估算缺失的评价。第三阶段,采用基于量子图模糊粗糙集(QPFR)的 M 步加权评估比率分析法(SWARA)对标准进行加权。最后,通过 QPFR VIKOR(Vlse Kriterijumska Optimizacija Kompromisno Resenje)对投资决策优先级进行排序。本研究的主要贡献在于将人工智能方法与模糊决策方法相结合,以计算决策者的权重。在这种情况下,对这些人的评价将根据其资质进行审查。这种情况对做出更有效的评价具有积极的促进作用。组织效率被认为是提高元数据投资绩效的最重要因素。同样,还发现企业在发展元数据投资时必须确保技术改进。另一方面,排名结果表明,监管框架是这方面最关键的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems Innovative solution suggestions for financing electric vehicle charging infrastructure investments with a novel artificial intelligence-based fuzzy decision-making modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1