Yusuf Adamu, Tajudeen Kolawole Bello, Umar Shehu, Abdullahi Bello, Gazali Tanimu, Muhammed Tijani Isa
{"title":"Jute nanofibers as modifiers in waste polypropylene/polystyrene/natural rubber (wPP/PS/NR) ter-blends","authors":"Yusuf Adamu, Tajudeen Kolawole Bello, Umar Shehu, Abdullahi Bello, Gazali Tanimu, Muhammed Tijani Isa","doi":"10.1007/s00289-024-05480-x","DOIUrl":null,"url":null,"abstract":"<div><p>The study explores the novel use of jute nanofibers as environmentally friendly modifiers to enhance the mechanical and thermal properties of waste polypropylene/polystyrene/natural rubber (wPP/PS/NR) ter-blends. It aligns with the sustainable development goal (MDG 7) to ensure environmental sustainability. Nanofiber was produced from jute fiber via a ball milling process after freezing with liquid nitrogen. The produced nanofibers were analyzed using Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS). Ter-blend, produced via melt blending using two-roll mills, was modified with the nanofibers at different weight percentages (2–10 wt%) at 2 wt% intervals. The modified polymer blends were characterized by their mechanical, thermal, physical, and morphological properties. FTIR revealed the removal of hemicellulose, lignin, and other impurities from the jute fiber due to chemical treatment. DLS analysis revealed an average size distribution of 85.54 nm, for which an intensity and polydispersity index (PDI) of 0.353 was achieved. Additionally, thermogravimetric analysis (TGA) confirmed that the jute nanofibers were thermally stable up to 282 °C. The polymer blends modified with 2 wt% nanofibers had the highest average impact and tensile strength. The percentage water absorption (%WA) showed that sp10% absorbed the highest amount of water after 24 h. The weight loss of the modified blend at various temperatures increased with the addition of nanofibers. Scanning electron microscopy (SEM) revealed cracks, voids, and blend separation as the amount of jute nanofibers increased. Dynamic mechanical analysis (DMA) revealed that the <i>T</i><sub>g</sub> of the modified blend improved, while the loss factor improved greatly by 43%, but the storage and loss moduli remained unchanged.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 18","pages":"16707 - 16732"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05480-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The study explores the novel use of jute nanofibers as environmentally friendly modifiers to enhance the mechanical and thermal properties of waste polypropylene/polystyrene/natural rubber (wPP/PS/NR) ter-blends. It aligns with the sustainable development goal (MDG 7) to ensure environmental sustainability. Nanofiber was produced from jute fiber via a ball milling process after freezing with liquid nitrogen. The produced nanofibers were analyzed using Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS). Ter-blend, produced via melt blending using two-roll mills, was modified with the nanofibers at different weight percentages (2–10 wt%) at 2 wt% intervals. The modified polymer blends were characterized by their mechanical, thermal, physical, and morphological properties. FTIR revealed the removal of hemicellulose, lignin, and other impurities from the jute fiber due to chemical treatment. DLS analysis revealed an average size distribution of 85.54 nm, for which an intensity and polydispersity index (PDI) of 0.353 was achieved. Additionally, thermogravimetric analysis (TGA) confirmed that the jute nanofibers were thermally stable up to 282 °C. The polymer blends modified with 2 wt% nanofibers had the highest average impact and tensile strength. The percentage water absorption (%WA) showed that sp10% absorbed the highest amount of water after 24 h. The weight loss of the modified blend at various temperatures increased with the addition of nanofibers. Scanning electron microscopy (SEM) revealed cracks, voids, and blend separation as the amount of jute nanofibers increased. Dynamic mechanical analysis (DMA) revealed that the Tg of the modified blend improved, while the loss factor improved greatly by 43%, but the storage and loss moduli remained unchanged.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."