{"title":"The role of additive manufacturing in the study of carbon fiber-reinforced polymer composite","authors":"Sanket Dilip Meshram, Shruti Gupta, Manisha Kulthe, Balasubramanian Kandasubramanian","doi":"10.1007/s00289-024-05476-7","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber (CF) is highly valued for its exceptional strength-to-weight relation, making it best for energy-efficient applications in aerospace, automotive, and construction sectors. Recent advancements in CF technology have reduced production costs, enhancing market growth. Carbon fiber-reinforced polymer (CFRP) composites offer benefits such as fatigue resistance, weight reduction, stiffness, and corrosion resistance. The choice of matrix material, particularly thermoplastics, impacts CFRP properties, with thermoplastics favored for recyclability and mass production. Fabrication techniques like filament winding and resin transfer molding ensure precise CF alignment but have complexities. Additive manufacturing (AM) methods, such as FDM, DLP, and SLA, provide design flexibility and efficiency. Recycling approaches, including thermal, mechanical, and chemical methods, address CFRP waste. This review offers an overview of AM technologies in CFRP manufacturing, focusing on advancements in continuous, short, and nano carbon fiber composites, their properties, manufacturing methods, and recycling techniques, as well as their applications and topological optimization.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"15469 - 15511"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05476-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber (CF) is highly valued for its exceptional strength-to-weight relation, making it best for energy-efficient applications in aerospace, automotive, and construction sectors. Recent advancements in CF technology have reduced production costs, enhancing market growth. Carbon fiber-reinforced polymer (CFRP) composites offer benefits such as fatigue resistance, weight reduction, stiffness, and corrosion resistance. The choice of matrix material, particularly thermoplastics, impacts CFRP properties, with thermoplastics favored for recyclability and mass production. Fabrication techniques like filament winding and resin transfer molding ensure precise CF alignment but have complexities. Additive manufacturing (AM) methods, such as FDM, DLP, and SLA, provide design flexibility and efficiency. Recycling approaches, including thermal, mechanical, and chemical methods, address CFRP waste. This review offers an overview of AM technologies in CFRP manufacturing, focusing on advancements in continuous, short, and nano carbon fiber composites, their properties, manufacturing methods, and recycling techniques, as well as their applications and topological optimization.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."