Eco-friendly electrodeposition sensing of hydrogen peroxide based on Co@Ag/PPy bimetallic nanohybrid

IF 3.1 3区 化学 Q2 POLYMER SCIENCE Polymer Bulletin Pub Date : 2024-08-13 DOI:10.1007/s00289-024-05457-w
Leila Lamiri, Ouafia Belgherbi, Assia Tounsi, Mamoun Fellah, Chibani Atef, Abdelfetteh Sayah, Noureddine Boumaza, Samah Boudour, Khemliche Hamza, Mohammad Alam Saeed, Pavel. V. Avramov, Gamal A. El-Hiti
{"title":"Eco-friendly electrodeposition sensing of hydrogen peroxide based on Co@Ag/PPy bimetallic nanohybrid","authors":"Leila Lamiri, Ouafia Belgherbi, Assia Tounsi, Mamoun Fellah, Chibani Atef, Abdelfetteh Sayah, Noureddine Boumaza, Samah Boudour, Khemliche Hamza, Mohammad Alam Saeed, Pavel. V. Avramov, Gamal A. El-Hiti","doi":"10.1007/s00289-024-05457-w","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has practical applications in healthcare, food security, and environmental protection. The current study has been focused on creating H<sub>2</sub>O<sub>2</sub> sensors using a bimetallic composition of polypyrrole/Cobalt-silver on indium tin oxide (ITO) through electrochemical fabrication. Composite hybrid materials comprising Co@Ag/PPy/ITO were successfully synthesized using chronoamperometry and pulsed electrodeposition techniques. The obtained electrode (Co@Ag/PPy/ITO) was studied using scanning electron microscopy (SEM), ultraviolet–visible, and cyclic voltammetry techniques. The energy-dispersive X-ray spectroscopy and SEM revealed that silver and cobalt nanoparticles were distributed on the PPy surface, forming fern-like structures. A detailed investigation of the electrochemical properties of the bimetallic composition was conducted using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy. The amperometric method and CV were used to carry out the electrochemical detection of H<sub>2</sub>O<sub>2</sub>. The non-enzymatic H<sub>2</sub>O<sub>2</sub> sensor exhibited an enhanced amperometry response, showing a higher sensitivity of 3.664 mA mM<sup>−1</sup> cm<sup>−2</sup> within a linear range spanning 0.12–2.36 mM. Notably, the sensor achieved a low detection limit of 1.985 μM (S/N = 3). Additionally, the nanocomposite hybrids demonstrated superior stability, repeatability, and reproducibility, making this sensor suitable for long-term use.</p>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00289-024-05457-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) has practical applications in healthcare, food security, and environmental protection. The current study has been focused on creating H2O2 sensors using a bimetallic composition of polypyrrole/Cobalt-silver on indium tin oxide (ITO) through electrochemical fabrication. Composite hybrid materials comprising Co@Ag/PPy/ITO were successfully synthesized using chronoamperometry and pulsed electrodeposition techniques. The obtained electrode (Co@Ag/PPy/ITO) was studied using scanning electron microscopy (SEM), ultraviolet–visible, and cyclic voltammetry techniques. The energy-dispersive X-ray spectroscopy and SEM revealed that silver and cobalt nanoparticles were distributed on the PPy surface, forming fern-like structures. A detailed investigation of the electrochemical properties of the bimetallic composition was conducted using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy. The amperometric method and CV were used to carry out the electrochemical detection of H2O2. The non-enzymatic H2O2 sensor exhibited an enhanced amperometry response, showing a higher sensitivity of 3.664 mA mM−1 cm−2 within a linear range spanning 0.12–2.36 mM. Notably, the sensor achieved a low detection limit of 1.985 μM (S/N = 3). Additionally, the nanocomposite hybrids demonstrated superior stability, repeatability, and reproducibility, making this sensor suitable for long-term use.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Co@Ag/PPy 双金属纳米杂化物的生态友好型过氧化氢电沉积传感技术
过氧化氢(H2O2)在医疗保健、食品安全和环境保护方面有着实际应用。目前的研究重点是通过电化学制造方法,在铟锡氧化物(ITO)上使用聚吡咯/钴银双金属成分来制造 H2O2 传感器。研究人员采用时变法和脉冲电沉积技术成功合成了由 Co@Ag/PPy/ITO 组成的复合杂化材料。利用扫描电子显微镜(SEM)、紫外可见光和循环伏安技术对所获得的电极(Co@Ag/PPy/ITO)进行了研究。能量色散 X 射线光谱和扫描电镜显示,银和钴纳米粒子分布在 PPy 表面,形成蕨状结构。使用循环伏安法(CV)、计时阻抗法和电化学阻抗光谱法对双金属成分的电化学特性进行了详细研究。安培法和循环伏安法用于 H2O2 的电化学检测。非酶促 H2O2 传感器的安培计响应增强,在 0.12-2.36 mM 的线性范围内显示出 3.664 mA mM-1 cm-2 的较高灵敏度。值得注意的是,该传感器的检测限低至 1.985 μM(S/N = 3)。此外,纳米复合杂化物还表现出卓越的稳定性、可重复性和再现性,使该传感器适合长期使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Bulletin
Polymer Bulletin 化学-高分子科学
CiteScore
6.00
自引率
6.20%
发文量
0
审稿时长
5.5 months
期刊介绍: "Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad. "Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."
期刊最新文献
Development and characterization of a simple and fast castor oil-based polyurethane coating The medicinal value of natural and modified Poria cocos polysaccharides Evaluation of a green synthesized biopolymer polymethyl methacrylate grafted Moringa gum amphiphilic graft copolymer (MOG-g-PMMA) with polymeric-surfactant like properties for biopharmaceutical applications Green synthesis and optimization of bacterial cellulose production from food industry by-products by response surface methodolgy Preparation and characterization of polyethylene glycol/sodium alginate aerogel beads loaded with biogenic zinc oxide nanoparticles: potential therapeutic option for treating multidrug-resistant bacteria and cytotoxic activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1