Leila Lamiri, Ouafia Belgherbi, Assia Tounsi, Mamoun Fellah, Chibani Atef, Abdelfetteh Sayah, Noureddine Boumaza, Samah Boudour, Khemliche Hamza, Mohammad Alam Saeed, Pavel. V. Avramov, Gamal A. El-Hiti
{"title":"Eco-friendly electrodeposition sensing of hydrogen peroxide based on Co@Ag/PPy bimetallic nanohybrid","authors":"Leila Lamiri, Ouafia Belgherbi, Assia Tounsi, Mamoun Fellah, Chibani Atef, Abdelfetteh Sayah, Noureddine Boumaza, Samah Boudour, Khemliche Hamza, Mohammad Alam Saeed, Pavel. V. Avramov, Gamal A. El-Hiti","doi":"10.1007/s00289-024-05457-w","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has practical applications in healthcare, food security, and environmental protection. The current study has been focused on creating H<sub>2</sub>O<sub>2</sub> sensors using a bimetallic composition of polypyrrole/Cobalt-silver on indium tin oxide (ITO) through electrochemical fabrication. Composite hybrid materials comprising Co@Ag/PPy/ITO were successfully synthesized using chronoamperometry and pulsed electrodeposition techniques. The obtained electrode (Co@Ag/PPy/ITO) was studied using scanning electron microscopy (SEM), ultraviolet–visible, and cyclic voltammetry techniques. The energy-dispersive X-ray spectroscopy and SEM revealed that silver and cobalt nanoparticles were distributed on the PPy surface, forming fern-like structures. A detailed investigation of the electrochemical properties of the bimetallic composition was conducted using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy. The amperometric method and CV were used to carry out the electrochemical detection of H<sub>2</sub>O<sub>2</sub>. The non-enzymatic H<sub>2</sub>O<sub>2</sub> sensor exhibited an enhanced amperometry response, showing a higher sensitivity of 3.664 mA mM<sup>−1</sup> cm<sup>−2</sup> within a linear range spanning 0.12–2.36 mM. Notably, the sensor achieved a low detection limit of 1.985 μM (S/N = 3). Additionally, the nanocomposite hybrids demonstrated superior stability, repeatability, and reproducibility, making this sensor suitable for long-term use.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"16021 - 16042"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05457-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) has practical applications in healthcare, food security, and environmental protection. The current study has been focused on creating H2O2 sensors using a bimetallic composition of polypyrrole/Cobalt-silver on indium tin oxide (ITO) through electrochemical fabrication. Composite hybrid materials comprising Co@Ag/PPy/ITO were successfully synthesized using chronoamperometry and pulsed electrodeposition techniques. The obtained electrode (Co@Ag/PPy/ITO) was studied using scanning electron microscopy (SEM), ultraviolet–visible, and cyclic voltammetry techniques. The energy-dispersive X-ray spectroscopy and SEM revealed that silver and cobalt nanoparticles were distributed on the PPy surface, forming fern-like structures. A detailed investigation of the electrochemical properties of the bimetallic composition was conducted using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy. The amperometric method and CV were used to carry out the electrochemical detection of H2O2. The non-enzymatic H2O2 sensor exhibited an enhanced amperometry response, showing a higher sensitivity of 3.664 mA mM−1 cm−2 within a linear range spanning 0.12–2.36 mM. Notably, the sensor achieved a low detection limit of 1.985 μM (S/N = 3). Additionally, the nanocomposite hybrids demonstrated superior stability, repeatability, and reproducibility, making this sensor suitable for long-term use.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."