Targeting heterozygous dominant negative variant of KCNA2 using Gapmer ASO for the treatment of drug-resistant epilepsy

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy. Nucleic Acids Pub Date : 2024-08-27 DOI:10.1016/j.omtn.2024.102316
Hua Huang, Dong Rui Ma, Derrick Wei Shih Chan, Adeline Seow Fen Ngoh, Dejie Yu, Shi Jun Ng, John Jia En Chua, Eng King Tan, Hui-Lin Chin, Denise Li Meng Goh, Tuck Wah Soong
{"title":"Targeting heterozygous dominant negative variant of KCNA2 using Gapmer ASO for the treatment of drug-resistant epilepsy","authors":"Hua Huang, Dong Rui Ma, Derrick Wei Shih Chan, Adeline Seow Fen Ngoh, Dejie Yu, Shi Jun Ng, John Jia En Chua, Eng King Tan, Hui-Lin Chin, Denise Li Meng Goh, Tuck Wah Soong","doi":"10.1016/j.omtn.2024.102316","DOIUrl":null,"url":null,"abstract":"A missense mutation c.1220C>G of gene was recently identified in an infant with epilepsy. encodes K1.2 subunits that form voltage-gated potassium channels (VGKC) via tetrameric assembly. The mutation results in amino acid change P407R at the highly conserved motif. Functional characterization revealed that mutant K1.2_P407R subunits formed loss-of-function channels and suppressed both K1.2 and K1.1 channel activities. Hetero-tetrameric assembly of the K1.2_P407R subunits with other neuronal voltage-gated potassium channels of Shaker subfamily could lead to general deficit of repolarizing potassium current and potentially underlie the enhanced seizure susceptibility. Indeed, expression of human K1.2_P407R in early postnatal rat cortical neurons or genetically engineered hESC-derived neurons disclosed broadening of action potential duration and early afterdepolarization (EAD), associating with reduced potassium current. We hypothesize that Gapmer antisense oligonucleotides (ASOs) targeted to c.1220C>G mutation will selectively degrade the mutant mRNA while allowing the remaining wild-type (WT) subunits to form functional channels. As a proof of principle, delivery of Gapmer packaged in lipid nanoparticle into cortical neurons selectively suppressed K1.2_P407R over the WT protein expression, reversing the broadening of action potential duration, abrogating the EAD and leading to overall increase in potassium current.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A missense mutation c.1220C>G of gene was recently identified in an infant with epilepsy. encodes K1.2 subunits that form voltage-gated potassium channels (VGKC) via tetrameric assembly. The mutation results in amino acid change P407R at the highly conserved motif. Functional characterization revealed that mutant K1.2_P407R subunits formed loss-of-function channels and suppressed both K1.2 and K1.1 channel activities. Hetero-tetrameric assembly of the K1.2_P407R subunits with other neuronal voltage-gated potassium channels of Shaker subfamily could lead to general deficit of repolarizing potassium current and potentially underlie the enhanced seizure susceptibility. Indeed, expression of human K1.2_P407R in early postnatal rat cortical neurons or genetically engineered hESC-derived neurons disclosed broadening of action potential duration and early afterdepolarization (EAD), associating with reduced potassium current. We hypothesize that Gapmer antisense oligonucleotides (ASOs) targeted to c.1220C>G mutation will selectively degrade the mutant mRNA while allowing the remaining wild-type (WT) subunits to form functional channels. As a proof of principle, delivery of Gapmer packaged in lipid nanoparticle into cortical neurons selectively suppressed K1.2_P407R over the WT protein expression, reversing the broadening of action potential duration, abrogating the EAD and leading to overall increase in potassium current.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Gapmer ASO 靶向 KCNA2 的杂合显性负变异,治疗耐药性癫痫
最近在一名患有癫痫的婴儿身上发现了该基因的一个错义突变 c.1220C>G。该基因编码 K1.2 亚基,通过四聚体组装形成电压门控钾通道(VGKC)。基因突变导致高度保守基序的氨基酸发生变化,变为 P407R。功能表征显示,突变的 K1.2_P407R 亚基形成了功能缺失通道,并抑制了 K1.2 和 K1.1 通道的活性。K1.2_P407R 亚基与 Shaker 亚家族的其他神经元电压门控钾通道的异源四聚体组装可能会导致复极化钾电流的普遍缺失,并可能是癫痫发作易感性增强的潜在原因。事实上,在出生后早期大鼠皮质神经元或基因工程 hESC 衍生神经元中表达人 K1.2_P407R 会导致动作电位持续时间和早期后去极化(EAD)延长,这与钾电流减少有关。我们假设,针对 c.1220C>G 突变的 Gapmer 反义寡核苷酸 (ASO) 将选择性地降解突变体 mRNA,同时允许剩余的野生型(WT)亚基形成功能性通道。作为原理验证,将封装在脂质纳米颗粒中的 Gapmer 运送到大脑皮层神经元中,可选择性地抑制 K1.2_P407R 而不是 WT 蛋白的表达,从而逆转动作电位持续时间的加宽,消除 EAD 并导致钾电流的整体增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
期刊最新文献
Allele-specific CRISPR-Cas9 editing inactivates a single-nucleotide variant associated with collagen VI muscular dystrophy. CRISPR-Cas13d: RNA's own Jedi Master in the fight against viral darkness. Boosting CRISPR-Cas9 efficiency through enhanced homologous recombination. Engineered AAV capsid transport mutants overcome transduction deficiencies in the aged CNS Quality by design for mRNA platform purification based on continuous oligo-dT chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1