Pedro Justicia-Lirio, María Tristán-Manzano, Noelia Maldonado-Pérez, Carmen Barbero-Jiménez, Marina Cortijo-Gutiérrez, Kristina Pavlovic, Francisco J. Molina-Estevez, Pilar Muñoz, Ana Hinckley-Boned, Juan R. Rodriguez-Madoz, Felipe Prosper, Carmen Griñán-Lison, Saúl A. Navarro-Marchal, Julia Muñoz-Ballester, Pedro A. González-Sierra, Concha Herrera, Juan A. Marchal, Francisco Martín
{"title":"First-in-class transactivator-free, doxycycline-inducible IL-18-engineered CAR-T cells for relapsed/refractory B cell lymphomas","authors":"Pedro Justicia-Lirio, María Tristán-Manzano, Noelia Maldonado-Pérez, Carmen Barbero-Jiménez, Marina Cortijo-Gutiérrez, Kristina Pavlovic, Francisco J. Molina-Estevez, Pilar Muñoz, Ana Hinckley-Boned, Juan R. Rodriguez-Madoz, Felipe Prosper, Carmen Griñán-Lison, Saúl A. Navarro-Marchal, Julia Muñoz-Ballester, Pedro A. González-Sierra, Concha Herrera, Juan A. Marchal, Francisco Martín","doi":"10.1016/j.omtn.2024.102308","DOIUrl":null,"url":null,"abstract":"Although chimeric antigen receptor (CAR) T cell therapy has revolutionized type B cancer treatment, efficacy remains limited in various lymphomas and solid tumors. Reinforcing conventional CAR-T cells to release cytokines can improve their efficacy but also increase safety concerns. Several strategies have been developed to regulate their secretion using minimal promoters that are controlled by chimeric proteins harboring transactivators. However, these chimeric proteins can disrupt the normal physiology of T cells. Here, we present the first transactivator-free anti-CD19 CAR-T cells able to control IL-18 expression (iTRUCK19.18) under ultra-low doses of doxycycline and without altering cellular fitness. Interestingly, IL-18 secretion requires T cell activation in addition to doxycycline, allowing the external regulation of CAR-T cell potency. This effect was translated into an increased CAR-T cell antitumor activity against aggressive hematologic and solid tumor models. In a clinically relevant context, we generated patient-derived iTRUCK19.18 cells capable of eradicating primary B cells tumors in a doxycycline-dependent manner. Furthermore, IL-18-releasing CAR-T cells polarized pro-tumoral macrophages toward an antitumoral phenotype, suggesting potential for modulating the tumor microenvironment. In summary, we showed that our platform can generate exogenously controlled CAR-T cells with enhanced potency and in the absence of transactivators.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"40 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although chimeric antigen receptor (CAR) T cell therapy has revolutionized type B cancer treatment, efficacy remains limited in various lymphomas and solid tumors. Reinforcing conventional CAR-T cells to release cytokines can improve their efficacy but also increase safety concerns. Several strategies have been developed to regulate their secretion using minimal promoters that are controlled by chimeric proteins harboring transactivators. However, these chimeric proteins can disrupt the normal physiology of T cells. Here, we present the first transactivator-free anti-CD19 CAR-T cells able to control IL-18 expression (iTRUCK19.18) under ultra-low doses of doxycycline and without altering cellular fitness. Interestingly, IL-18 secretion requires T cell activation in addition to doxycycline, allowing the external regulation of CAR-T cell potency. This effect was translated into an increased CAR-T cell antitumor activity against aggressive hematologic and solid tumor models. In a clinically relevant context, we generated patient-derived iTRUCK19.18 cells capable of eradicating primary B cells tumors in a doxycycline-dependent manner. Furthermore, IL-18-releasing CAR-T cells polarized pro-tumoral macrophages toward an antitumoral phenotype, suggesting potential for modulating the tumor microenvironment. In summary, we showed that our platform can generate exogenously controlled CAR-T cells with enhanced potency and in the absence of transactivators.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.