YOLOv8s-CFB: a lightweight method for real-time detection of apple fruits in complex environments

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Real-Time Image Processing Pub Date : 2024-08-31 DOI:10.1007/s11554-024-01543-4
Bing Zhao, Aoran Guo, Ruitao Ma, Yanfei Zhang, Jinliang Gong
{"title":"YOLOv8s-CFB: a lightweight method for real-time detection of apple fruits in complex environments","authors":"Bing Zhao, Aoran Guo, Ruitao Ma, Yanfei Zhang, Jinliang Gong","doi":"10.1007/s11554-024-01543-4","DOIUrl":null,"url":null,"abstract":"<p>With the development of apple-picking robots, deep learning models have become essential in apple detection. However, current detection models are often disrupted by complex backgrounds, leading to low recognition accuracy and slow speeds in natural environments. To address these issues, this study proposes an improved model, YOLOv8s-CFB, based on YOLOv8s. This model introduces partial convolution (PConv) in the backbone network, enhances the C2f module, and forms a new architecture, CSPPC, to reduce computational complexity and improve speed. Additionally, FocalModulation technology replaces the original SPPF module to enhance the model’s ability to recognize key areas. Finally, the bidirectional feature pyramid (BiFPN) is introduced to adaptively learn the importance of weights at each scale, effectively retaining multi-scale information through a bidirectional context information transmission mechanism, and improving the model’s detection ability for occluded targets. Test results show that the improved YOLOv8 network achieves better detection performance, with an average accuracy of 93.86%, a parameter volume of 8.83 M, and a detection time of 0.7 ms. The improved algorithm achieves high detection accuracy with a small weight file, making it suitable for deployment on mobile devices. Therefore, the improved model can efficiently and accurately detect apples in complex orchard environments in real time.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"31 4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01543-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of apple-picking robots, deep learning models have become essential in apple detection. However, current detection models are often disrupted by complex backgrounds, leading to low recognition accuracy and slow speeds in natural environments. To address these issues, this study proposes an improved model, YOLOv8s-CFB, based on YOLOv8s. This model introduces partial convolution (PConv) in the backbone network, enhances the C2f module, and forms a new architecture, CSPPC, to reduce computational complexity and improve speed. Additionally, FocalModulation technology replaces the original SPPF module to enhance the model’s ability to recognize key areas. Finally, the bidirectional feature pyramid (BiFPN) is introduced to adaptively learn the importance of weights at each scale, effectively retaining multi-scale information through a bidirectional context information transmission mechanism, and improving the model’s detection ability for occluded targets. Test results show that the improved YOLOv8 network achieves better detection performance, with an average accuracy of 93.86%, a parameter volume of 8.83 M, and a detection time of 0.7 ms. The improved algorithm achieves high detection accuracy with a small weight file, making it suitable for deployment on mobile devices. Therefore, the improved model can efficiently and accurately detect apples in complex orchard environments in real time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLOv8s-CFB:在复杂环境中实时检测苹果果实的轻量级方法
随着苹果采摘机器人的发展,深度学习模型已成为苹果检测的关键。然而,目前的检测模型经常会被复杂的背景干扰,导致识别准确率低,在自然环境中识别速度慢。为了解决这些问题,本研究在 YOLOv8s 的基础上提出了一种改进模型 YOLOv8s-CFB。该模型在主干网络中引入了部分卷积(PConv),增强了 C2f 模块,并形成了一种新的架构 CSPPC,以降低计算复杂度并提高速度。此外,FocalModulation 技术取代了原有的 SPPF 模块,增强了模型识别关键区域的能力。最后,引入双向特征金字塔(BiFPN),自适应学习各尺度权重的重要性,通过双向上下文信息传输机制有效保留多尺度信息,提高模型对遮挡目标的检测能力。测试结果表明,改进后的 YOLOv8 网络具有更好的检测性能,平均准确率为 93.86%,参数量为 8.83 M,检测时间为 0.7 ms。改进算法以较小的权重文件实现了较高的检测精度,适合在移动设备上部署。因此,改进后的模型可以在复杂的果园环境中高效、准确地实时检测苹果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
期刊最新文献
High-precision real-time autonomous driving target detection based on YOLOv8 GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments Fast rough mode decision algorithm and hardware architecture design for AV1 encoder AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions Mfdd: Multi-scale attention fatigue and distracted driving detector based on facial features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1