Chiara Africano, Tiziana Bachetti, Paolo Uva, Gabriel Pitollat, Genny Del Zotto, Francesca Giacopelli, Giada Recchi, Nicolas Lenfant, Amélia Madani, Nathan Beckouche, Muriel Thoby-Brisson, Isabella Ceccherini
{"title":"Identification of a histone deacetylase inhibitor as a therapeutic candidate for congenital central hypoventilation syndrome","authors":"Chiara Africano, Tiziana Bachetti, Paolo Uva, Gabriel Pitollat, Genny Del Zotto, Francesca Giacopelli, Giada Recchi, Nicolas Lenfant, Amélia Madani, Nathan Beckouche, Muriel Thoby-Brisson, Isabella Ceccherini","doi":"10.1016/j.omtn.2024.102319","DOIUrl":null,"url":null,"abstract":"Congenital central hypoventilation syndrome (CCHS), a rare genetic disease caused by heterozygous mutations, is characterized by life-threatening breathing deficiencies. PHOX2B is a transcription factor required for the specification of the autonomic nervous system, which contains, in particular, brain stem respiratory centers. In CCHS, mutations lead to cytoplasmic PHOX2B protein aggregations, thus compromising its transcriptional capability. Currently, the only available treatment for CCHS is assisted mechanical ventilation. Therefore, identifying molecules with alleviating effects on CCHS-related breathing impairments is of primary importance. A transcriptomic analysis of cells transfected with different constructs was used to identify compounds of interest with the CMap tool. Using fluorescence microscopy and luciferase assay, the selected molecules were further tested for their ability to restore the nuclear location and function of PHOX2B. Finally, an electrophysiological approach was used to investigate the effects of the most promising molecule on respiratory activities of -mutant mouse isolated brain stem. The histone deacetylase inhibitor SAHA was found to have low toxicity , to restore the proper location and function of PHOX2B protein, and to improve respiratory rhythm-related parameters . Thus, our results identify SAHA as a promising agent to treat CCHS-associated breathing deficiencies.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102319","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital central hypoventilation syndrome (CCHS), a rare genetic disease caused by heterozygous mutations, is characterized by life-threatening breathing deficiencies. PHOX2B is a transcription factor required for the specification of the autonomic nervous system, which contains, in particular, brain stem respiratory centers. In CCHS, mutations lead to cytoplasmic PHOX2B protein aggregations, thus compromising its transcriptional capability. Currently, the only available treatment for CCHS is assisted mechanical ventilation. Therefore, identifying molecules with alleviating effects on CCHS-related breathing impairments is of primary importance. A transcriptomic analysis of cells transfected with different constructs was used to identify compounds of interest with the CMap tool. Using fluorescence microscopy and luciferase assay, the selected molecules were further tested for their ability to restore the nuclear location and function of PHOX2B. Finally, an electrophysiological approach was used to investigate the effects of the most promising molecule on respiratory activities of -mutant mouse isolated brain stem. The histone deacetylase inhibitor SAHA was found to have low toxicity , to restore the proper location and function of PHOX2B protein, and to improve respiratory rhythm-related parameters . Thus, our results identify SAHA as a promising agent to treat CCHS-associated breathing deficiencies.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.