{"title":"Post-functionalization of alternating π-conjugated copolymers containing fluorene moieties via anodic chlorination using AlCl3","authors":"Tomoyuki Kurioka, Ikuyoshi Tomita, Shinsuke Inagi","doi":"10.1038/s41428-024-00958-x","DOIUrl":null,"url":null,"abstract":"Fluorene (Fl) derivatives are representative emitting motifs; thus, they are often installed into alternating π-conjugated copolymers (P(Fl-Ar)) as soluble polymeric emitters. Many researchers have focused on modifying the combined arylene units in P(Fl-Ar) derivatives to tune their optoelectronic properties; however, P(Fl-Ar) derivatives that contain fluorene units with functional groups at their sp2 carbons remain limited. Here, we synthesize P(Fl-Ar) derivatives comprising sp2-chlorinated fluorene units via anodic chlorination using aluminum chloride (AlCl3). The introduced chlorine atoms affect the optoelectronic properties of the pristine P(Fl-Ar) derivatives. Compared with the precursor P(Fl-Ar) derivatives, chlorinated P(Fl-Ar) derivatives exhibit longer maximum emission wavelengths. Alternating π-conjugated copolymers containing 9,9-dialkylfluorene (Fl) units have been widely studied, but there are few of these copolymers with sp2-carbon functionalized Fl units. In this study, we expand this limitation by performing the anodic chlorination of alternating π-conjugated copolymers, which are composed of Fl and another arylene (Ar) (P(Fl-Ar)s), using an acetonitrile solution that contains aluminum chloride as an electrolyte. The sp2-carbon at the fluorene ring was successfully chlorinated by anodic chlorination. P(Fl-Ar)s containing sp2-chlorinated fluorene units has different emission properties from the original P(Fl-Ar)s.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 12","pages":"1117-1127"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00958-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00958-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorene (Fl) derivatives are representative emitting motifs; thus, they are often installed into alternating π-conjugated copolymers (P(Fl-Ar)) as soluble polymeric emitters. Many researchers have focused on modifying the combined arylene units in P(Fl-Ar) derivatives to tune their optoelectronic properties; however, P(Fl-Ar) derivatives that contain fluorene units with functional groups at their sp2 carbons remain limited. Here, we synthesize P(Fl-Ar) derivatives comprising sp2-chlorinated fluorene units via anodic chlorination using aluminum chloride (AlCl3). The introduced chlorine atoms affect the optoelectronic properties of the pristine P(Fl-Ar) derivatives. Compared with the precursor P(Fl-Ar) derivatives, chlorinated P(Fl-Ar) derivatives exhibit longer maximum emission wavelengths. Alternating π-conjugated copolymers containing 9,9-dialkylfluorene (Fl) units have been widely studied, but there are few of these copolymers with sp2-carbon functionalized Fl units. In this study, we expand this limitation by performing the anodic chlorination of alternating π-conjugated copolymers, which are composed of Fl and another arylene (Ar) (P(Fl-Ar)s), using an acetonitrile solution that contains aluminum chloride as an electrolyte. The sp2-carbon at the fluorene ring was successfully chlorinated by anodic chlorination. P(Fl-Ar)s containing sp2-chlorinated fluorene units has different emission properties from the original P(Fl-Ar)s.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.