Héloïse Baldo, Azariel Ruiz-Valencia, Louis Cornette de Saint Cyr, Guillaume Ramadier, Eddy Petit, Marie-Pierre Belleville, José Sanchez-Marcano, Laurence Soussan
{"title":"Methane biohydroxylation into methanol by Methylosinus trichosporium OB3b: possible limitations and formate use during reaction","authors":"Héloïse Baldo, Azariel Ruiz-Valencia, Louis Cornette de Saint Cyr, Guillaume Ramadier, Eddy Petit, Marie-Pierre Belleville, José Sanchez-Marcano, Laurence Soussan","doi":"10.3389/fbioe.2024.1422580","DOIUrl":null,"url":null,"abstract":"Methane (CH<jats:sub>4</jats:sub>) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain <jats:italic>Methylosinus trichosporium</jats:italic> OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH<jats:sub>4</jats:sub> hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with <jats:sup>13</jats:sup>C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (<jats:italic>i.e.</jats:italic>, culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1422580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methane (CH4) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain Methylosinus trichosporium OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH4 hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with 13C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (i.e., culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.